Verilog -- 改进的Booth乘法(基4)

Verilog -- 改进的Booth乘法(基4)

@(verilog)

1. 背景

之前已经介绍过Booth乘法算法的基本原理以及代码,实际上之前的算法是基2的booth算法,每次对乘数编码都只考虑两位。因此在实际实现时往往效率不高,考虑最坏情况,使用基2的booth算法计算两个8位数据的乘法,除了编码复杂,计算时需要累加8个部分积,可见最坏情况跟普通阵列乘法器需要累加的部分积个数一样,因此代价不低。

改进的Booth乘法为了减少部分积的累加,现在基本很少采用基2的booth算法了,而是采用基4甚至基8的形式,下面主要介绍一下基4的booth算法。

2. 原理

跟基2的算法一样,假设A和B是乘数和被乘数,且有:

\[\begin{align} A &= \color{green}{(a_{2n+1}a_{2n})}a_{2n-1}a_{2n-2}\dots a_{1}a_{0}\color{green}{(a_{-1})} \tag{1}\\ B &= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ b_{2n-1}b_{2n-2}\dots b_{1}b_{0} \tag{2} \end{align} \]

其中,\(a_{-1}\)是末尾补的0,\(a_{2n},a_{2n+1}\)是扩展的两位符号位。可以将乘数A表示为:

\[A = (-1\cdot a_{2n-1})2^{2n-1}+ a_{2n-2}\cdot2^{2n-2}+\cdots + a_1\cdot 2+a_0 \]

同样可以将两数的积表示为:

\[\begin{align} AB &= (a_{-1}+a_0-2a_1)\times B\times 2^0 + (a_1+a_2-2a_3)\times B\times 2^2 \tag{}\\ &+(a_{3}+a_4-a_5)\times B\times 2^4 +\dots \tag{}\\ &+(a_{2n-1}+a_{2n}-2a_{2n+1}) \times B\times 2^{2n} \tag{}\\ &=\color{red}{B\times [\sum_{k=0}^{n}(a_{2k-1}+a_{2k}-2a_{2k+1})\cdot 2^{2k}]} \tag{3} \\ &=B\times Val(A) \tag{} \end{align} \]

红色部分即为基4booth的编码方式。

3. 算法实现

有了公式就可以比较方便地推导算法步骤了,首先给出基4booth的编码表:

乘数位 \((a_{2k-1}+a_{2k}-2a_{2k+1})\) 编码操作
000 0
001 +B
010 +B
011 +2B
100 -2B
101 -B
110 -B
111 0
所有操作过后都会移位两次

示例:
\(A = -7,B = -3\)
首先,计算编码需要的操作数:
\(+B = 1111 1101\)
\(-B = 0000 0011\)
\(+2B = 1111 1010\)
\(-2B = 0000 0110\)
下面对\(A\)进行编码:

\(A => (11) 1001 (0)=> (111) (100) (010)=> (0) (-2X) (+X)\)

计算过程:

+ 1111 1101    +B 
+ 0001 10      -2B << <<
-----------
= 0001 0101    = 21

可以发现,对于8bit的乘法,基4的booth算法最多只需要计算4个部分积的累加,极大简化了求和逻辑。

4. Verilog 代码

verilog代码参考的是fanhu大神写的,链接: https://pan.baidu.com/s/1bR0SK0NeeaenLC73E1kKNg 提取码: 4kat
下面的代码针对上面的做了部分修改。

`timescale 1ns/1ps

module booth_radix4 #(
  parameter WIDTH_M = 8,
  parameter WIDTH_R = 8
  )(
  input                             clk,
  input                             rstn,
  input                             vld_in,
  input  [WIDTH_M-1:0]              multiplicand,
  input  [WIDTH_R-1:0]              multiplier,
  output [WIDTH_M+WIDTH_R-1:0]      mul_out,
  output reg done
);
parameter   IDLE   = 2'b00,
            ADD    = 2'b01,
            SHIFT  = 2'b11,
            OUTPUT = 2'b10;
			
reg  [1:0]  current_state, next_state;  	
		
reg [WIDTH_M+WIDTH_R+2:0] add1;
reg [WIDTH_M+WIDTH_R+2:0] sub1;
reg [WIDTH_M+WIDTH_R+2:0] add_x2;
reg [WIDTH_M+WIDTH_R+2:0] sub_x2;
reg [WIDTH_M+WIDTH_R+2:0] p_dct;
reg [WIDTH_R-1:0] count;

always @(posedge clk or negedge rstn) 
  if(!rstn) current_state = IDLE;
  else if (!vld_in) current_state = IDLE;
  else current_state <= next_state;
  
always @* begin
  next_state = 2'bx;
  case (current_state)
    IDLE : if (vld_in) next_state = ADD;
    else               next_state = IDLE;
    ADD  : next_state = SHIFT  ; 
    SHIFT : if (count==WIDTH_R/2) next_state = OUTPUT;
            else                  next_state = ADD;
    OUTPUT : next_state = IDLE;
	default: next_state = IDLE;
  endcase
end  


always @(posedge clk or negedge rstn) begin
  if(!rstn) begin
    {add1,sub1,add_x2,sub_x2,p_dct,count,done} <= 0;
  end else begin
    case(current_state) 
      IDLE: begin
        add1     <= {{2{multiplicand[WIDTH_R-1]}},multiplicand,{WIDTH_R+1{1'b0}}};
        sub1     <= {-{{2{multiplicand[WIDTH_R-1]}},multiplicand},{WIDTH_R+1{1'b0}}};
        add_x2   <= {{multiplicand[WIDTH_M-1],multiplicand,1'b0},{WIDTH_R+1{1'b0}}};
        sub_x2   <= {-{multiplicand[WIDTH_M-1],multiplicand,1'b0},{WIDTH_R+1{1'b0}}};
        p_dct    <= {{WIDTH_M+1{1'b0}},multiplier,1'b0}  ;
        count    <= 0;
        done     <= 0;
      end
      ADD:begin
        case(p_dct[2:0])
          3'b000,3'b111: p_dct <= p_dct;
          3'b001,3'b010: p_dct <= p_dct+add1;
          3'b101,3'b110: p_dct <= p_dct+sub1;
          3'b100:        p_dct <= p_dct+sub_x2;	   
          3'b011:        p_dct <= p_dct+add_x2;
          default:       p_dct <= p_dct;
        endcase
        count <= count+1;
      end
      SHIFT:
        p_dct <= {p_dct[WIDTH_M+WIDTH_R+2],p_dct[WIDTH_M+WIDTH_R+2],p_dct[WIDTH_M+WIDTH_R+2:2]};

      OUTPUT:begin
        done  <= 1;	 
      end		  
    endcase
  end   
end

assign mul_out = p_dct[WIDTH_M+WIDTH_R:1];

endmodule

testbench:


`timescale 1ns/1ps

module booth_radix4_tb();
`define TEST_WIDTH 4

parameter WIDTH_M = `TEST_WIDTH;
parameter WIDTH_R = `TEST_WIDTH;

reg                 clk;
reg                 rstn;
reg                 vld_in;
reg   [WIDTH_M-1:0] multiplicand;
reg   [WIDTH_R-1:0] multiplier;

wire   [WIDTH_M+WIDTH_R-1:0] mul_out;
wire                         done;
//输入 :要定义有符号和符号,输出:无要求
wire signed [`TEST_WIDTH-1:0]                m1_in;
wire signed [`TEST_WIDTH-1:0]                m2_in;

reg  signed [2*`TEST_WIDTH-1:0] product_ref;
reg  [2*`TEST_WIDTH-1:0] product_ref_u;

assign m1_in = multiplier[`TEST_WIDTH-1:0];
assign m2_in = multiplicand[`TEST_WIDTH-1:0];


always #1 clk = ~clk;
integer i,j;
integer num_good;
initial begin
  clk = 0;
  vld_in = 0;
  multiplicand = 0;
  multiplier = 0;
  num_good = 0;
  rstn = 1;
  #4 rstn = 0; #2 rstn = 1;
  repeat(2) @(posedge clk);
  for (i = 0; i < (1<<`TEST_WIDTH); i = i + 1) begin
    for (j = 0; j < (1<<`TEST_WIDTH); j = j + 1) begin
      vld_in = 1;
      wait (done == 0);
      wait (done == 1);
      product_ref=m1_in*m2_in;
      product_ref_u=m1_in*m2_in;
      if (product_ref != mul_out) begin
        $display("multiplier = %d multiplicand = %d proudct =%d",m1_in,m2_in,mul_out);
        @(posedge clk);
        $stop;
      end
      else begin
        num_good = num_good + 1;
      end
      multiplicand = multiplicand + 1;
    end
    multiplier = multiplier + 1;
  end
  $display("sim done. num good = %d",num_good);
  $finish;

end

booth_radix4 #(  .WIDTH_M ( WIDTH_M ),
                 .WIDTH_R ( WIDTH_R ))
U_BOOTH_RADIX4_0
(  .clk          ( clk          ),
   .rstn         ( rstn         ),
   .vld_in       ( vld_in       ),
   .multiplicand ( multiplicand ),
   .multiplier   ( multiplier   ),
   .mul_out      ( mul_out      ),
   .done         ( done         ));


initial begin
  $fsdbDumpvars();
  $fsdbDumpMDA();
  $dumpvars();
end

endmodule


仿真波形图:
首先num_good表示正确的计算数目,因为上面我只测试了4位宽度的所有有符号乘法,因此总的计算个数为16*16=256个,这边显示全部正确。

下面是波形图:


PS:跟之前写的基2的算法相比,这里如果位宽改为10,经过仿真得到的计算周期为12周期几乎比基2减少了一半。(之前写的基2在计算10bit时需要21个周期)

posted @ 2020-05-14 17:31  love小酒窝  阅读(4556)  评论(4编辑  收藏  举报