python自然语言处理——3.8 分割

微信公众号:数据运营人
本系列为博主的读书学习笔记,如需转载请注明出处。

第三章 加工原料文本

3.8 分割断句分词

3.8 分割

断句

在词级水平处理文本通常假定能够将文本划分成单个句子,一些语料库已经提供在句子级别的访问,计算布朗语料库中每个句子的平均词数:

import nltk
len(nltk.corpus.brown.words()) / len(nltk.corpus.brown.sents())

20.250994070456922

sent_tokenizer=nltk.data.load('tokenizers/punkt/english.pickle')
text = nltk.corpus.gutenberg.raw('chesterton-thursday.txt')
sents = sent_tokenizer.tokenize(text)
pprint.pprint(sents[171:181])

['"Nonsense!','" said Gregory, who was very rational when anyone else\nattempted paradox.','"Why do all the clerks and navvies in the\nrailway trains look so sad and tired,…','I will\ntell you.','It is because they know that the train is going right.','It\nis because they know that whatever place they have taken a ticket\nfor that …','It is because after they have\npassed Sloane Square they know that the next stat…','Oh, their wild rapture!','oh,\ntheir eyes like stars and their souls again in Eden, if the next\nstation w…''"\n\n"It is you who are unpoetical," replied the poet Syme.']

分词

在中文中,三个字符的字符串:爱国人(ai4 “love” [verb], guo3 “country”,ren2 “person”) 可以被分词为“爱国/人” , “country-loving person” ,或者“爱/国人” , “ love country-person” 。

例1-1:从分词表示字符串seg1和seg2 中重建文本分词。 seg1 和 seg2 表示假设的一些儿童讲话的初始和最终分词。函数 segment() 可以使用它们重现分词的文本。

def segment(text, segs):
    words = []
    last = 0
    for i in range(len(segs)):
        if segs[i] == '1':
            words.append(text[last:i+1])
            last = i+1
    words.append(text[last:])
    return words
text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
seg1 = "0000000000000001000000000010000000000000000100000000000"
seg2 = "0100100100100001001001000010100100010010000100010010000"
print(segment(text, seg1))
print(segment(text, seg2))

['doyouseethekitty', 'seethedoggy', 'doyoulikethekitty', 'likethedoggy']
['do', 'you', 'see', 'the', 'kitty', 'see', 'the', 'doggy', 'do', 'you','like', 'the', kitty', 'like', 'the', 'doggy']

例1-2:计算存储词典和重构源文本的成本。

def evaluate(text, segs):
    words = segment(text, segs)
    text_size = len(words)
    lexicon_size = len(' '.join(list(set(words))))
    return text_size + lexicon_size
text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
seg1 = "0000000000000001000000000010000000000000000100000000000"
seg2 = "0100100100100001001001000010100100010010000100010010000"
seg3 = "0000100100000011001000000110000100010000001100010000001"
print(segment(text, seg3))
print(evaluate(text, seg3))
print(evaluate(text, seg2))
print(evaluate(text, seg1))

['doyou', 'see', 'thekitt', 'y', 'see', 'thedogg', 'y', 'doyou', 'like','thekitt', 'y', 'like', 'thedogg', 'y']
46
47
63
例1-3:使用模拟退火算法的非确定性搜索:一开始仅搜索短语分词;随机扰动 0 和 1 ,它们与“温度”成比例;每次迭代温度都会降低,扰动边界会减少。

from random import randint
def flip(segs, pos):
    return segs[:pos] + str(1-int(segs[pos])) + segs[pos+1:]
def flip_n(segs, n):
    for i in range(n):
        segs = flip(segs, randint(0,len(segs)-1))
    return segs
def anneal(text, segs, iterations, cooling_rate):  
    temperature = float(len(segs))
    while temperature > 0.5:
        best_segs, best = segs, evaluate(text, segs)
        for i in range(iterations):
            guess = flip_n(segs, int(round(temperature)))
            score = evaluate(text, guess)
            if score < best:
                best, best_segs = score, guess
        score, segs = best, best_segs
        temperature = temperature / cooling_rate
        print(evaluate(text, segs), segment(text, segs))
    return segs
text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
seg1 = "0000000000000001000000000010000000000000000100000000000"
anneal(text, seg1, 50001.2)

60 ['doyouseetheki', 'tty', 'see', 'thedoggy', 'doyouliketh', 'ekittylike', 'thedoggy']
58 ['doy', 'ouseetheki', 'ttysee', 'thedoggy', 'doy', 'o', 'ulikethekittylike', 'thedoggy']
56 ['doyou', 'seetheki', 'ttysee', 'thedoggy', 'doyou', 'liketh', 'ekittylike', 'thedoggy']
54 ['doyou', 'seethekit', 'tysee', 'thedoggy', 'doyou', 'likethekittylike', 'thedoggy']
53 ['doyou', 'seethekit', 'tysee', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
51 ['doyou', 'seethekittysee', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']42 ['doyou', 'see', 'thekitty', 'see', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
'0000100100000001001000000010000100010000000100010000000'

posted @ 2019-03-14 16:14  ly803744  阅读(871)  评论(0编辑  收藏  举报