59699

$\bf引理:$设$\int_a^{ + \infty } {f\left( x \right)dx} $收敛,且${f\left( x \right)}$在$\left[ {a,{\rm{ + }}\infty } \right)$单调,则$\lim \limits_{x \to + \infty } xf\left( x \right) = 0$,进而$\lim \limits_{x \to + \infty }f\left( x \right) = 0$

 

$\bf命题:$设$\int_a^{ + \infty } {f\left( x \right)dx} $收敛,且可微函数${f\left( x \right)}$在$\left[ {a,{\rm{ + }}\infty } \right)$单调递减,则$\int_a^{ + \infty } {xf'\left( x \right)dx} $收敛

$\bf证明$  对任意的$x \in \left[ {a, + \infty } \right)$,由$\bf分部积分法$知
\[\int_a^x {tf'\left( t \right)dt} = tf\left( t \right)\left| {\begin{array}{*{20}{c}}x\\a
\end{array}} \right. - \int_a^x {f\left( t \right)dt} \]
而由$\int_a^{ + \infty } {f\left( t \right)dt} $收敛知$\lim \limits_{x \to + \infty } \int_a^x {f\left( t \right)dt} $存在,又由引理知$\lim \limits_{x \to + \infty }xf\left( x \right) = 0$,所以有$\lim \limits_{x \to + \infty }\int_a^x {tf'\left( t \right)dt}$存在,从而由反常积分收敛的定义即证

 

posted on 2014-06-13 21:19  一阴一阳之谓道  阅读(304)  评论(0编辑  收藏  举报

导航