5656

$\bf命题1:$设$f(x)$是$\left[ {1, + \infty } \right)$上的非负单调减少函数,令

\[{a_n} = \sum\limits_{k = 1}^n {f\left( k \right)} - \int_1^n {f\left( x \right)dx} ,n \in {N_ + }\]
证明:数列$\left\{ {{a_n}} \right\}$收敛

证明:由$f(x)$在$\left[ {1, + \infty } \right)$上单调减少知,$f(x)$在$\left[ {n,n + 1} \right]$上可积,且
\begin{equation}\label{eq1}f\left( {n + 1} \right) \le \int_n^{n + 1} {f\left( x \right)dx} \le f\left( n \right),n \in {N_ + }\end{equation}

从而可知\begin{equation}\label{eq2}{a_{n + 1}} - {a_n} = f\left( {n + 1} \right) - \int_n^{n + 1} {f\left( x \right)dx} \le 0\end{equation}
即$\left\{ {{a_n}} \right\}$单调减少;而又由$\eqref {eq1}$知

\begin{align}\label{eq3}
{a_n} &= \sum\limits_{k = 1}^n {f\left( k \right)} - \int_1^n {f\left( x \right)dx} \nonumber\\&
\ge \sum\limits_{k = 1}^n {\int_k^{k + 1} {f\left( x \right)dx} } - \int_1^n {f\left( x \right)dx}\\&
= \int_n^{n + 1} {f\left( x \right)dx} \ge f\left( {n + 1} \right) \ge 0 \nonumber\end{align}
即$\left\{ {{a_n}} \right\}$有上界,故由$\eqref {eq2}$,$\eqref {eq3}$及单调有界原理知数列$\left\{ {{a_n}} \right\}$收敛

posted on 2014-05-04 11:54  一阴一阳之谓道  阅读(180)  评论(0编辑  收藏  举报

导航