关于正交阵与实对称正交阵的专题讨论
$\bf命题:$设$A,B$为$n$阶实正交阵,且$\det \left( {A + B} \right) = \det \left( A \right) -\det \left( B \right)$,证明:$\det \left( A \right) = \det \left( B \right)$
$\bf命题:$设$A,B$为$n$阶正交阵,则$n-r(A+B)$为偶数当且仅当$\det \left( A \right) = \det \left( B \right)$
$\bf命题:$设$A$为一个$n$阶非零实矩阵,若${A_{ij}} = {a_{ij}}$,则$A$为正交阵且$\left| A \right| = 1$
$\bf命题:$设$A$为$n$阶实对称阵,若${A^k} = E$,则$A$为正交阵
$\bf命题:$设$A$为$n$阶正交阵,$A{x_i} = {x_i}\left( {i = 1,2, \cdots ,n - 1} \right)$,且${x_1}, \cdots ,{x_{n - 1}}$线性无关,$\left| A \right| = 1$,求$A$
1
$\bf命题:$设$A$为$n$阶正交阵,则$r\left( {A - E} \right) = r{\left( {A - E} \right)^2}$
1
$\bf命题:$设$A$为正交阵,$A$的特征值全为实数,证明:$A$为对称阵
$(02川大六)$设$A,B$均为$n$阶实正交阵,$t$为矩阵${A^{ - 1}}B$的特征值$-1$的重数,证明:
(1)$|AB|=1$当且仅当$t$为偶数 (2)$r(A+B)=n-t$
实对称正交阵
$\bf(07华师四)$设$A$为实矩阵,证明:若下面三条中任意两条成立,则另一条也成立
(1)$A$为正交阵 (2)$A$为对称阵 (3)${A^2} = E$
$\bf(12首都师大十)$设$A$为$n$阶实对称正交阵,证明:存在整数$m$,使得$tr(A)=n-2m$
$\bf(11中南四)$设$A$为$n$阶实对称正交阵,且$1$为$A$的$r$重特征值
(1)求$A$的相似对角阵 (2)求$|3E-A|$
$\bf命题:$设$A$为正交阵且正定,证明:$A=E$