关于可逆阵与伴随阵的专题讨论

可逆阵

$\bf命题:$设$A$为$m\times n$矩阵,$B$为$n\times m$矩阵,若$E_n-BA$可逆,证明:$E_m-AB$可逆,并求其逆矩阵

1

$\bf命题:$设$A,B$均为$n$阶矩阵,且$A+B=AB$,则

   (1)${\left( {E - A} \right)^{ - 1}} = E - B$

   (2)$AB=BA$

   (3)$r(A)=r(B)$

1

$\bf命题:$

$\bf命题:$设$A$为$n$阶幂等阵$\left( {{A^2} = A} \right)$,证明:$E+A$可逆,且${\left( {E + A} \right)^{ - 1}} = E - \frac{1}{2}A$

$\bf命题:$设$A$为$n$阶幂零阵$\left( {{A^k} = 0,k \in {N_ + }} \right)$,证明:$E-A$可逆,且${\left( {E - A} \right)^{ - 1}} = E + A + {A^2} +  \cdots  + {A^{k - 1}}$

 

伴随阵

$\bf命题:$设$A$为数域$F$上的$n$阶方阵$(n>2)$,试求${\left( {{A^*}} \right)^*}$

1

$\bf命题:$设$A,B \in {P^{n \times n}}$,则${\left( {AB} \right)^*} = {B^*}{A^*}$

1

$\bf命题:$设$A$为$n$阶不可逆阵,则${A^*}$的$n$个特征值至少有$n-1$个为零且另一个非零特征值(如果存在)等于${A_{11}} + {A_{22}} +  \cdots  + {A_{nn}}$

1

$\bf命题:$

 

posted on 2014-05-13 14:47  142857  阅读(367)  评论(0编辑  收藏  举报

导航