关于核空间与像空间的专题讨论
$\bf命题:$设${W_1},{W_2}$是线性空间$V$的任意两个子空间,则
$(1)$${W_1}$一定是$V$的某个线性变换的核
$(2)$${W_1}$一定是$V$的某个线性变换的像
$(3)$若$dim{W_1}{\rm{ + }}dim{W_2}{\rm{ = }}n$,则一定存在$\sigma \in L\left( V \right)$,使得${W_1}{\rm{ = }}Ker\left( \sigma \right),{W_2}{\rm{ = }}Im\left( \sigma \right)$
1
$\bf命题:$设${\sigma _1},{\sigma _2} \in L\left( {V,n,F} \right)$,则$Ker{\sigma _1} \subseteq Ker{\sigma _2}$当且仅当存在线性变换$\sigma $,使得${\sigma _2} = \sigma {\sigma _1}$.若$Ker{\sigma _1} = Ker{\sigma _2}$,则$\sigma $为可逆线性变换
$\bf命题:$设${\sigma _1},{\sigma _2} \in L\left( {V,n,F} \right)$,则$Im{\sigma _1} \subseteq Im{\sigma _2}$当且仅当存在线性变换$\sigma $,使得${\sigma _1} = {\sigma _2}\sigma $.若$Im{\sigma _1} = Im{\sigma _2}$,则$\sigma $为可逆线性变换
$\bf命题:$设$\sigma ,\tau \in L\left( {V,n,F} \right),{\sigma ^2} = \sigma ,{\tau ^2} = \tau $,则
(1)$Im\sigma = Im\tau \Leftrightarrow \sigma \tau = \tau ,\tau \sigma = \sigma $
(2)$Ker\sigma = Ker\tau \Leftrightarrow \sigma \tau = \sigma ,\tau \sigma = \tau $
1
$\bf命题:$