关于介值定理的专题讨论
$\bf命题:$设$f\left( x \right) \in C\left[ {a,b} \right]$,则存在$\xi \in \left[ {a,b} \right]$,使得$f\left( \xi \right) = \frac{{{c_1}f\left( {{x_1}} \right) + \cdots + {c_n}f\left( {{x_n}} \right)}}{{{c_1} + \cdots + {c_n}}}$,其中${c_i} > 0,a < {x_1} < ... < {x_n} < b$
$\bf命题:$设$f\left( x \right) \in C\left( {a,b} \right)$,且$\lim \limits_{x \to \begin{array}{*{20}{c}}{{a^ + }}\end{array}} f\left( x \right) = A,\lim \limits_{x \to \begin{array}{*{20}{c}}{{b^ - }}\end{array}} f\left( x \right) = B$,则对任意$c \in \left( {A,B} \right)$,存在$\xi \in \left( {a,b} \right)$,使得$f\left( \xi \right) = c $
$\bf命题:$设$f\left( x \right)$在$\left[ {0, + \infty } \right)$上有连续导数,且$f'\left( x \right) \ge k > 0,f\left( 0 \right) < 0$,则$f\left( x \right)$在$\left( {0, + \infty } \right)$上有且仅有一个零点
$\bf命题:$开普勒$\bf\left( {Kepler} \right)$方程$x = \varepsilon \sin x + a\left( {0 < \varepsilon < 1} \right)$只有唯一实根
$\bf命题:$设$f(x)$在$(a,b)$内二阶可导,$c$为$(a,b)$内一点,满足$f''\left( c \right) \ne 0$,则存在不同的点${x_1},{x_2} \in \left( {a,b} \right)$,使得\[\frac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} = f'\left( c \right)\]
$\bf命题:$