关于数项级数收敛的专题讨论
$\bf命题1:$设正项级数$\sum\limits_{n = 1}^\infty {{a_n}} $发散,且${s_n} = \sum\limits_{k = 1}^n {{a_k}} $,试讨论级数$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{{s_n}^\alpha }}} \ $的敛散性
$\bf命题2:$设正项级数$\sum\limits_{n = 1}^\infty {{a_n}} $收敛,则存在发散到正无穷大的数列$\left\{ {{b_n}} \right\}$,使得级数$\sum\limits_{n = 1}^\infty {{a_n}{b_n}} $仍收敛
$\bf命题:$设$\sum\limits_{n = 1}^\infty {{a_n}} $为收敛的正项级数,$\left\{ {n{a_n}} \right\}$单调,证明:$\lim \limits_{n \to \infty } n{a_n}\ln n = 0$
1 2 3
$\bf命题:$设${a_n} > 0,\sum\limits_{n = 1}^\infty {{a_n}} $收敛,证明:$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{\left( {n + 1} \right){a_{n + 1}}}}} $发散
1