Python读取文件并写入ODPS

前提:

  将本地csv文件,用pandas读取,并进行数据ETL,最后导入到ODPS表中。

代码如下:

import pandas as pd
from tqdm import tqdm_notebook
from odps import ODPS
from odps import options
from odps.df import DataFrame


from odps.df import DataFrame
# 查看相对路径
%pwd
odps = ODPS('ODPS_ak', 'ODPS_pw', 'ODPS项目空间',
            endpoint='http://service.cn-shanghai.maxcompute.aliyun.com/api',
            tunnel_endpoint="http://dt.cn-shanghai.maxcompute.aliyun.com")
# 读取数据
data = pd.read_csv('/home/linxz/datadir/202108.csv',encoding='utf-8') # 07已同步
# 查看数据是否全部读取成功
data.describe()
复制代码
# 数据ETL
a = data[['company_id','ofr_id','bid_id','security_id','bond_id','listed_market','short_name','time','bid_price','bid_volume','ofr_price','ofr_volume','bid_yield','bid_net_price','bid_flag_bargain','bid_flag_relation','bid_exercise','bid_price_description','bid_quote_type','ofr_yield','ofr_net_price','ofr_flag_bargain','ofr_flag_relation','ofr_exercise']]
b = data[['ofr_price_description']]
b_new = b.replace('[,]','',regex = True) # 使用正则表达式,将数据中的英文逗号改为中文
c = data[['ofr_quote_type','bid_ss_detect','ofr_ss_detect']]
data_join = a.join(b_new)
data_new = data_join.join(c)
data_new.head()
 
# 新增最后面一列,作为分区
data_new['month_date'] = '202108'
data_new.head()

# 最后导入ODPS表中 
options.connect_timeout=200
options.tunnel.use_instance_tunnel = True
options.tunnel.limit_instance_tunnel = False
odps_awake_model_result = DataFrame(data_new)
print(odps_awake_model_result)
odps_awake_model_result.persist('ODPS项目空间.o_sumscope_bond_relation_detail_d', partitions=['month_date'], odps=odps)

# 导出方式二:导出到本地
# 导出修改后的csv文件 # data_new.to_csv(
'/home/linxz/datadir/202101_new.csv')

 



复制代码

 

posted @   明明就-  阅读(1572)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 25岁的心里话
点击右上角即可分享
微信分享提示