Ch12 块设备I/O和缓冲区管理
Ch12 块设备I/O和缓冲区管理
12.1 块设备I/O缓冲区
-
I/O缓冲的基本原理
文件系统使用一系列I/O缓冲区作为块设备的缓存内存。
- 当进程试图读取(dev, blk)标识的磁盘块时,它首先在缓冲区缓存中搜索分配给磁盘块的缓冲区。
- 如果该缓冲区存在并且包含有效数据,那么它只需从缓冲区中读取数据,而无须再次从磁盘中读取数据块。
- 如果该缓冲区不存在,它会为磁盘块分配一个缓冲区,将数据从磁盘读人缓冲区,然后从缓冲区读取数据。
- 当某个块被读入时,该缓冲区将被保存在缓冲区缓存中,以供任意进程对同一个块的下一次读/写请求使用。同样,当进程写入磁盘块时,它首先会获取一个分配给该块的缓冲区。然后,它将数据写入缓冲区,将缓冲区标记为脏,以延退写入,并将其释放到缓冲区缓存中。由于脏缓冲区包含有效的数据,因此可以使用它来满足对同一块的后续读/写清求,而不会引起实际磁盘I/O,脏缓冲区只有
- 在被重新分配到不同的块时才会写入磁盘。
- 当进程试图读取(dev, blk)标识的磁盘块时,它首先在缓冲区缓存中搜索分配给磁盘块的缓冲区。
-
同步写入操作等待写操作完成。它用于顺序块或可移动块设备,如USB驱动器。对于 随机访问设备,例如硬盘,所有的写操作都是延迟写操作。在延迟写操作中,dwrite(bp)将 缓冲区标记为脏,并将其释放到缓冲区缓存中。
12.2 I/O缓冲区管理算法
Unix I/O缓冲区管理算法最早出现在第6版Unix中(Ritchie和Thompson 1978 ;Lion 1996 )。
Unix缓冲区管理子系统由以下几部分组成:
-
I/O缓冲区:内核中的一系列NBUF缓冲区用作缓冲区缓存。每个缓冲区用一个结构体表示。缓冲区结构体由两部分组成:用于缓冲区管理的缓冲头部分和用于数据块的数据部分。
typdef struct buf{ struct buf *next_free; // freelist pointer struct buf *next_dev; // dev_list pointer int dev,blk; // assigned disk block; int opcode; // READ|WRITE int dirty; // buffer data modified int async; // ASYNC write flag int valid; // buffer data valid int busy; // buffer is in use int wanted; // some process needs this buffer struct semaphore lock=1; // buffer locking semaphore; value=1 struct semaphore iodone=0; // for process to wait for I/O completion; char buf[BLKSIZE]; // block data area } BUFFER; BUFFER buf[NBUF], *freelist; // NBUF buffers and free buffer list
-
设备表:每个块设备用一个设备表结构表示。
struct devtab{ u16 dev; // major device number BUFFER *dev_list; // device buffer list BUFFER *io_queue; // device I/O queue } devtab[NDEV];
-
缓冲区初始化:当系统启动时,所有I/O缓冲区都在空闲列表中,所有设备列表和 I/O队列均为空。
-
缓冲区列表
-
Unix getblk/brelse algorithm
- 数据一致性:为确保数据一致性,getblk一定不能给同一个(dev, blk)分配多个缓冲区。这可以通过让进程从休眠状态唤醒后再次执行“重试循环“来实现。可以验证分配的每个缓冲区都是唯一的一其次,脏缓冲区在重新分配之前被写出来,这保证了数据的一致性。
- 缓存效果:缓存效果可通过以下方法实现释放的缓冲区保留在设备列表中,以便 可能重用,标记为延迟写入的缓冲区不会立即产生I/O,并且可以重用。缓冲区会被释放到空闲列表的末尾,但分配是从空闲列表的前面开始的,这是基于LRU (最近最少使用)原则, 它有助于延长所分配缓冲区的使用期,从而提高它们的缓存效果。
- 临界区:设备中断处理程序可操作缓冲区列表,例如从设备表的I/O队列中删除 bp,更改其状态并调用brelse(bp)。所以,在getb汰和brelse中,设备中断在这些临界区中会被屏蔽。这些都是隐含的,没有在算法中表现出来。
/* getblk: return a buffer=(dev,blk) for exclusive use */ BUFFER *getblk(dev,blk){ while(1){ (1). search dev_list for a bp=(dev, blk); 360 12 Block Device I/O and Buffer Management (2). if (bp in dev_lst){ if (bp BUSY){ set bp WANTED flag; sleep(bp); // wait for bp to be released continue; // retry the algorithm } /* bp not BUSY */ take bp out of freelist; mark bp BUSY; return bp; } (3). /* bp not in cache; try to get a free buf from freelist */ if (freelist empty){ set freelist WANTED flag; sleep(freelist); // wait for any free buffer continue; // retry the algorithm } (4). /* freelist not empty */ bp = first bp taken out of freelist; mark bp BUSY; if (bp DIRTY){ // bp is for delayed write awrite(bp); // write bp out ASYNC; continue; // from (1) but not retry } (5). reassign bp to (dev,blk); // set bp data invalid, etc. return bp; } /** brelse: releases a buffer as FREE to freelist **/ brelse(BUFFER *bp){ if (bp WANTED) wakeup(bp); // wakeup ALL proc’s sleeping on bp; if (freelist WANTED) wakeup(freelist); // wakeup ALL proc’s sleeping on freelist; clear bp and freelist WANTED flags; insert bp to (tail of) freelist; }
-
Unix算法的缺点
- 效率低下
- 缓存效果不可预知
- 可能会出现饥饿
- 该算法使用只适用于单处理器系统的休眠/唤醒操作
12.3 新的I/O缓冲区管理算法
P/V算法
BUFFER *getblk(dev, blk)
{
while(1){
(1). P(free); // get a free buffer first
(2). if (bp in dev_list){
(3). if (bp not BUSY){
remove bp from freelist;
P(bp); // lock bp but does not wait
return bp;
}
// bp in cache but BUSY
V(free); // give up the free buffer
(4). P(bp); // wait in bp queue
return bp;
}
// bp not in cache, try to create a bp=(dev, blk)
(5). bp = frist buffer taken out of freelist;
P(bp); // lock bp, no wait
(6). if (bp dirty){
awrite(bp); // write bp out ASYNC, no wait
continue; // continue from (1)
}
(7). reassign bp to (dev,blk); // mark bp data invalid, not dirty
return bp;
} // end of while(1)
}
brelse(BUFFER *bp)
{
(8). if (bp queue has waiter){ V(bp); return; }
(9). if (bp dirty && free queue has waiter){ awrite(bp); return; }
(10). enter bp into (tail of) freelist; V(bp); V(free);
}