LeetCode136:只出现一次的数字与LeetCode137:只出现一次的数字ii

Leetcode136:

给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。

说明:

你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?

 

时间O(n),空间O(1)的算法实在没想到,满脑子里都是排序或者引入map。

看了下答案巧妙的运用了异或的性质,相同的数字异或为0,不同的数字异或异或为1的特点。

顺便纠正了下基础,异或运算在位上的,比如1异或3,答案不是1,而是2.因为异或是在001与011间的每一位进行,异或的结果是010,也就是2。

这样,对[a,a,c,b,c]这样的数组的每个数都进行^

a^a^c^b^c,配合结合律变为:

a^a^c^c^b

其中a^a^c^c=0

0^b=b

Leetcode137:

给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现了三次。找出那个只出现了一次的元素。

说明:

你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
    int singleNumber(vector<int>& nums) {
        int result=0;
        int cnt=0;
        for(int i=0;i<32;i++)
        {
            int tmp=0;//[-2,-2,1,1,-3,1,-3,-3,-4,-2]
            for(int j=0;j<nums.size();j++)
            {
 
                tmp+=nums[j]&1;
                nums[j]=nums[j]>>1;
            }
            tmp=tmp%3;
            result=result|(tmp<<i);
        }
        return result;
    }
};

从位的角度上来看,136题中,每一位的异或操作只是对进行二进制相加但不产生进位。

现在有三个相同的数,只要在每一位上,令三个相同的数进行某种运算后归0,即可将不同的数的那一位凸显出来。

因此考虑在每一位上进行三进制的相加,满了归0且不产生进位。

在32位上,所有数的某一位全部相加后对3取余,所得结果即是不同的数的对应位。

最后将每一位“或”起来即可。

另外关于负数的二进制位表示与右移:

负数的二进制表示并不是简单的将首尾改为1,比如-1的二进制表示实际上是1111....1(共32个)而不是1 000....1,不要想当然。

另外对负数进行右移时,符号位被丢弃后又会补一个1,比如-1,右移后并不会在首尾补0而是补1,因此无论右移多少次,一直为111....1,也即一直为-1。

posted @   李湘沅  阅读(145)  评论(0编辑  收藏  举报
编辑推荐:
· 智能桌面机器人:用.NET IoT库控制舵机并多方法播放表情
· Linux glibc自带哈希表的用例及性能测试
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
阅读排行:
· DeepSeek火爆全网,官网宕机?本地部署一个随便玩「LLM探索」
· 开发者新选择:用DeepSeek实现Cursor级智能编程的免费方案
· 【译】.NET 升级助手现在支持升级到集中式包管理
· 独立开发经验谈:如何通过 Docker 让潜在客户快速体验你的系统
· 并发编程 - 线程同步(二)
点击右上角即可分享
微信分享提示