Pyecharts基本图的使用

概况:Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众 多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

接下来展示的是pyecharts常见绘制的图形,也是我自己对知识的一种总结。

条形图:直观展示数据间的变化

from pyecharts.charts import Bar
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.globals import ThemeType

bar = Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
bar.add_xaxis(Faker.choose()) # 添加横轴数据
bar.add_yaxis('A',Faker.values()) # 添加纵轴数据
bar.add_yaxis('B',Faker.values())  # 添加纵轴数据
bar.set_global_opts(title_opts=opts.TitleOpts(title='条形图分别显示最大值'))
bar.set_series_opts(markline_opts=opts.MarkLineOpts(
    data=[
        # 线条数据
        # opts.MarkLineItem(type_='min',name='最小值'),
        # opts.MarkLineItem(type_='max',name='最大值'),
        opts.MarkLineItem(type_='average',name='平均值'),
    ]
))
bar.set_series_opts(label_opts=opts.LabelOpts(is_show=True))
bar.render_notebook()

 

 

 

# 堆叠条形图
from pyecharts.charts import Bar
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.globals import ThemeType

bar = Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
bar.add_xaxis(Faker.choose()) 
bar.add_yaxis('A',Faker.values(),stack='stack')
bar.add_yaxis('B',Faker.values(),stack='stack')
bar.set_global_opts(title_opts=opts.TitleOpts(title='堆叠条形图'))
bar.set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='inside'))
bar.render_notebook()

 

  

 

 

# 横向条形图
from pyecharts.charts import Bar
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.globals import ThemeType

bar = Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
bar.add_xaxis(Faker.choose()) 
bar.reversal_axis() # 横轴反转
bar.add_yaxis('A',Faker.values())
bar.add_yaxis('B',Faker.values())
bar.set_global_opts(title_opts=opts.TitleOpts(title='横向条形图'))
bar.set_series_opts(label_opts=opts.LabelOpts(position='right'))
bar.render_notebook()

 

  

 

 ②折线图:查看时间维度趋势变化,可以使用折线图

from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.globals import ThemeType

line = Line(init_opts=opts.InitOpts(theme=ThemeType.DARK))
line.add_xaxis(xaxis_data=Faker.choose())
# is_smooth:折线是否平滑
line.add_yaxis('A',y_axis=Faker.values(),is_smooth=True)
line.add_yaxis('B',y_axis=Faker.values(),is_smooth=True)

# splitline_opts:分割线设置 xaxis_opts:设置X轴 yaxis_opts:设置Y轴
line.set_global_opts(xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)))
line.set_global_opts(yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)))

line.set_global_opts(title_opts=opts.TitleOpts('平滑折线图'))
line.render_notebook()

 

  

 

 

# 多数据折线图
from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts import options as opts

# stack:多数据分隔开
line = Line(init_opts=opts.InitOpts(theme=ThemeType.DARK))
x_value= Faker.choose()
line.add_xaxis(xaxis_data=x_value)
line.add_yaxis(series_name=x_value[0],y_axis=Faker.values(),stack='总量',label_opts=opts.LabelOpts(is_show=False))
line.add_yaxis(series_name=x_value[1],y_axis=Faker.values(),stack='总量')
line.add_yaxis(series_name=x_value[2],y_axis=Faker.values(),stack='总量')
line.add_yaxis(series_name=x_value[3],y_axis=Faker.values(),stack='总量')
line.add_yaxis(series_name=x_value[4],y_axis=Faker.values(),stack='总量')
line.add_yaxis(series_name=x_value[5],y_axis=Faker.values(),stack='总量')
line.set_global_opts(yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)))
line.render_notebook()

 

  

 

 ③饼图:饼图将数据表示为具有不同大小和颜色的圆的切片。并且会标记对应每个片的值也在图表中表示

from pyecharts.charts import Pie
from pyecharts import options as opts
from pyecharts.globals import ThemeType
from pyecharts.faker import Faker


pie = Pie(init_opts=opts.InitOpts(theme=ThemeType.DARK))
# radius:设置饼图的形状,变成环形图
pie.add('',[list(z) for z in zip(Faker.choose(),Faker.values())],radius=['50%','80%'])
pie.set_global_opts(title_opts=opts.TitleOpts(title='饼图的绘制'))
# 设置颜色
pie.set_colors(['#FFDEAD','Honeydew','LavenderBlush','AntiqueWhite','#87CEFA','Gainsboro','FloralWhite'])
# 数据的显示:{a}:系列名。 {b}:数据名。{c}:数据值。
pie.set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{d}%'))
pie.render_notebook()

 

  

④散点图:主要用来查看相关性

from pyecharts.charts import Scatter
from pyecharts import options as opts
from random import randint,random
from pyecharts.globals import ThemeType

sca = Scatter(init_opts=opts.InitOpts(theme=ThemeType.DARK))
x = [randint(0,100) for i in range(10)]
y = [randint(0,100) for i in range(10)]
sca.add_xaxis(xaxis_data=x)
# symbol_size:图标大小,symbol:图标样式
sca.add_yaxis('',y_axis=y,label_opts=opts.LabelOpts(is_show=True),symbol_size=10,symbol='circle')
sca.set_global_opts(
    title_opts=opts.TitleOpts(title='散点图'),
    xaxis_opts=opts.AxisOpts(type_='value'), # 只显示值
    visualmap_opts=opts.VisualMapOpts(type_='size'))
# 改变颜色
sca.set_colors('AntiqueWhite') 
sca.render_notebook()

⑤热力图:热图用颜色比较分类数据,可通过设置表单元格的大小和形状来增强这种基本热图,(比如大小越大颜色越深代表销售额越高)颜色图例反映出连续数据范围

from pyecharts.charts import HeatMap
from random import randint,random
from pyecharts.globals import ThemeType
from pyecharts.faker import Faker
from pyecharts import options as opts

hm = HeatMap(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC))
# 构造x轴数据 横向24小时,纵向7天
value = [[i,j, randint(0,40)] for i in range(24) for j in range(7)]
hm.add_xaxis(Faker.choose())
hm.add_yaxis('',Faker.week,value,label_opts=opts.LabelOpts(is_show=True,position='inside'))
hm.set_global_opts(title_opts=opts.TitleOpts(title='热力图'),
    visualmap_opts=opts.VisualMapOpts(type_='color',range_color=['lightblue','orange']))
hm.render_notebook()

⑥漏洞图:漏斗图适用于业务流程比较规范、周期长、环节多的流程分析,通过漏斗各环节业务数据的比较,能够直观地发现和说明问题所在

from pyecharts.charts import Funnel
from pyecharts.globals import ThemeType
from pyecharts.faker import Faker
from pyecharts import options as opts

funnel = Funnel(init_opts=opts.InitOpts(theme=ThemeType.DARK))
funnel.add('',[list(z) for z in zip(Faker.choose(),Faker.values())])
funnel.set_global_opts(title_opts=opts.TitleOpts('漏斗图'))
# sort不设置:默认倒漏斗,sort='ascending':正漏斗
funnel.set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='outside',formatter='{b}: {d}%'),sort='ascending')
funnel.render_notebook()

⑦雷达图(Radar Chart):又称为蜘蛛网图(Spider Chart),雷达图的优势是能够表达多个指标的对比情况。当我们需要做多维度对比分析时,雷达图是个不错的选择

from pyecharts.charts import Radar
from pyecharts import options as opts
from pyecharts.faker import Faker

radar = Radar(init_opts=opts.InitOpts(theme=ThemeType.HALLOWEEN))

# 添加数据
score1 = [[83,73,83,81,98,70,57]]
score2 = [[93,55,76,87,63,72,100]]


radar.add_schema(
    schema=[
        opts.RadarIndicatorItem(name='语文',max_=100),
        opts.RadarIndicatorItem(name='数学',max_=100),
        opts.RadarIndicatorItem(name='英语',max_=100),
        opts.RadarIndicatorItem(name='物理',max_=100),
        opts.RadarIndicatorItem(name='化学',max_=100),
        opts.RadarIndicatorItem(name='地理',max_=100),
        opts.RadarIndicatorItem(name='政治',max_=100)
    ])
# linestyle_opts:线条颜色配置
radar.add('张三',score1,linestyle_opts=opts.LineStyleOpts(color="#5CACEE"))
radar.add('李四',score2,linestyle_opts=opts.LineStyleOpts(color="#CD0000"),)
radar.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
radar.set_global_opts(title_opts=opts.TitleOpts('雷达图'))
radar.set_colors(['green','white']) # 设置图例的颜色
radar.render_notebook()

⑧坐标地图:地图与路线的结合

from pyecharts.charts import Geo
from pyecharts.globals import ThemeType,GeoType,SymbolType
import pyecharts.options as opts

geo = Geo(init_opts=opts.InitOpts(theme=ThemeType.DARK))
geo.add_schema()
geo.add('',
        [['北京','新疆'],['北京','深圳'],['西藏','贵州'],['上海','深圳']],
        label_opts=opts.LabelOpts(is_show=False),
        # 类型设置:显示路线
        type_=GeoType.LINES,
        # 外部的线颜色
        color='blue',
        # 增加弧度
        linestyle_opts=opts.LineStyleOpts(curve=0.3),
        # 箭头的颜色
        effect_opts=opts.EffectOpts(symbol=SymbolType.ARROW,symbol_size=18,color='lightblue'))
geo.set_global_opts(title_opts=opts.TitleOpts(title='坐标地图'),visualmap_opts=opts.VisualMapOpts())
geo.render_notebook()

⑨时间线轮播多图:每个时间段数据的变化

from pyecharts.charts import Bar,Timeline
from pyecharts.faker import Faker
from pyecharts import options as opt
from matplotlib.pyplot import ylabel

x = Faker.choose()
tl = Timeline(init_opts=opts.InitOpts(theme=ThemeType.DARK))
for i in range(2007,2022):
    bar = Bar()
    bar.add_xaxis(x)
    bar.add_yaxis('A',Faker.values(),color=Faker.rand_color())
    bar.add_yaxis('B',Faker.values(),color=Faker.rand_color())
    bar.set_global_opts(title_opts=opt.TitleOpts(title=f'{i}年销售量'))
    tl.add(bar,f'{i}年')
tl.render_notebook()

⑩仪表盘图:查看指标完成的程度

from pyecharts.charts import Gauge
from pyecharts import options as opt

c = Gauge(init_opts=opts.InitOpts(theme=ThemeType.DARK))
c.add("", [("完成率", 70)],split_number=10, # 分割的段数
    axisline_opts=opt.AxisLineOpts(linestyle_opts=opt.LineStyleOpts(
    color=[(0.3, "#67e0e3"), (0.7, "#37a2da"), (1, "#fd666d")], width=30)))
c.set_global_opts(title_opts=opts.TitleOpts(title="仪表盘图"))
c.render_notebook()

 

 

posted @ 2022-10-06 15:26  小小程序员-lian  阅读(391)  评论(0编辑  收藏  举报