一秒变身艺术家!U2Net 跨界肖像画,让你的头像瞬间细节完美复刻,打造个性化头像新风潮!

效果

测试图片来自网络,如有侵权,联系删除。

项目

关注微信公众号,回复关键字:“一秒变身艺术家”,获取程序!

模型信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Inputs
-------------------------
name:input_image
tensor:Float[1, 3, 512, 512]
---------------------------------------------------------------
 
Outputs
-------------------------
name:output_image
tensor:Float[1, 1, 512, 512]
name:2016
tensor:Float[1, 1, 512, 512]
name:2017
tensor:Float[1, 1, 512, 512]
name:2018
tensor:Float[1, 1, 512, 512]
name:2019
tensor:Float[1, 1, 512, 512]
name:2020
tensor:Float[1, 1, 512, 512]
name:2021
tensor:Float[1, 1, 512, 512]
---------------------------------------------------------------

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;
 
namespace U2Net_Portrait
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }
 
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        int modelSize = 512;
 
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_ontainer;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
 
        Tensor<float> result_tensors;
        float[] result_array;
 
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }
 
        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
 
            textBox1.Text = "";
            pictureBox2.Image = null;
 
            int oldwidth = image.Cols;
            int oldheight = image.Rows;
 
            //缩放图片大小
            int maxEdge = Math.Max(image.Rows, image.Cols);
            float ratio = 1.0f * modelSize / maxEdge;
            int newHeight = (int)(image.Rows * ratio);
            int newWidth = (int)(image.Cols * ratio);
            Mat resize_image = image.Resize(new OpenCvSharp.Size(newWidth, newHeight));
            int width = resize_image.Cols;
            int height = resize_image.Rows;
            if (width != modelSize || height != modelSize)
            {
                resize_image = resize_image.CopyMakeBorder(0, modelSize - newHeight, 0, modelSize - newWidth, BorderTypes.Constant, new Scalar(255, 255, 255));
            }
 
            Cv2.CvtColor(resize_image, resize_image, ColorConversionCodes.BGR2RGB);
 
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = (resize_image.At<Vec3b>(y, x)[0] / 255f - 0.485f) / 0.229f;
                    input_tensor[0, 1, y, x] = (resize_image.At<Vec3b>(y, x)[1] / 255f - 0.456f) / 0.224f;
                    input_tensor[0, 2, y, x] = (resize_image.At<Vec3b>(y, x)[2] / 255f - 0.406f) / 0.225f;
                }
            }
 
            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_image", input_tensor));
 
            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;
 
            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();
 
            //读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();
 
            result_array = result_tensors.ToArray();
 
            for (int i = 0; i < result_array.Length; i++)
            {
                result_array[i] = 1 - result_array[i];
            }
 
            float maxVal = result_array.Max();
            float minVal = result_array.Min();
 
            for (int i = 0; i < result_array.Length; i++)
            {
                result_array[i] = (result_array[i] - minVal) / (maxVal - minVal) * 255;
            }
 
            Mat result_image = new Mat(512, 512, MatType.CV_32F, result_array);
 
            //还原图像大小
            if (width != modelSize || height != modelSize)
            {
                Rect rect = new Rect(0, 0, width, height);
                result_image = result_image.Clone(rect);
            }
            result_image = result_image.Resize(new OpenCvSharp.Size(oldwidth, oldheight));
 
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
 
        }
 
        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = Application.StartupPath;
 
            model_path = startupPath + "\\model\\u2net_portrait.onnx";
 
            modelSize = 512;
 
            //创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
 
            //设置为CPU上运行
            options.AppendExecutionProvider_CPU(0);
 
            //创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);
 
            //创建输入容器
            input_ontainer = new List<NamedOnnxValue>();
 
            //输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 512, 512 });
 
        }
 
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            var sdf = new SaveFileDialog();
            sdf.Title = "保存";
            sdf.Filter = "Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
 
            }
        }
    }
}

参考

https://github.com/xuebinqin/U-2-Net

 

posted @   天天代码码天天  阅读(48)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
点击右上角即可分享
微信分享提示