学习笔记-Kafka消息队列
官网地址:https://kafka.apache.org/
一、认识kafka
1、认识kafka
Apache Kafka是Apache软件基金会的开源的流处理平台,该平台提供了消息的订阅与发布的消息队列,一般用作系统间解耦、异步通信、削峰填谷等作用。同时Kafka又提供了Kafka streaming插件包实现了实时在线流处理。相比较一些专业的流处理框架不同,Kafka Streaming计算是运行在应用端,具有简单、入门要求低、部署方便等优点。
- 消息队列Message Queue
- Kafka Streaming 流处理
2、Message Queue是什么?
消息队列是一种在分布式和大数据开发中不可或缺的中间件。在分布式开发或者大数据开发中通常使用消息队列进行缓冲、系统间解耦和削峰填谷等业务场景,常见的消息队列工作模式大致会分为两大类:
- 至多一次:消息生产者将数据写入消息系统,然后由消费者负责去拉去消息服务器中的消息,一旦消息被确认消费之后,由消息服务器主动删除队列中的数据,这种消费方式一般只允许被一个消费者消费,并且消息队列中的数据不允许被重复消费。
- 没有限制:同上诉消费形式不同,生产者发不完数据以后,该消息可以被多个消费者同时消费,并且同一个消费者可以多次消费消息服务器中的同一个记录。主要是因为消息服务器一般可以长时间存储海量消息。
3、Kafka 基础架构
Kafka集群以Topic形式负责分类集群中的Record每一个Record属于一个Topic。每个Topic底层都会对应一组分区的日志用于持久化Topic中的Record。同时在Kafka集群中,Topic的每一个日志的分区都一定会有1个Borker担当该分区的Leader,其他的Broker担当该分区的follower,Leader负责分区数据的读写操作,follower负责同步改分区的数据。这样如果分区的Leader宕机,改分区的其他 follower会选取出新的leader继续负责该分区数据的读写。其中集群的中Leader的监控和Topic的部分元数据是存储在Zookeeper中.
4、Topics and Logs
Kafka中所有消息是通过Topic为单位进行管理,每个Kafka中的Topic通常会有多个订阅者,负责订阅发送到改Topic中的数据。Kafka负责管理集群中每个Topic的一组日志分区数据。
生产者将数据发布到相应的Topic。负责选择将哪个记录分发送到Topic中的哪个Partition。例如可以round-robin方式完成此操作,然而这种仅是为了平衡负载。也可以根据某些语义分区功能
(例如基于记录中的Key)进行此操作。
每组日志分区是一个有序的不可变的的日志序列,分区中的每一个Record都被分配了唯一的序列编号称为是offset,Kafka 集群会持久化所有发布到Topic中的Record信息,改Record的持久化时间是通过配置文件指定,默认是168小时。
log.retention.hours=168
Kafka底层会定期的检查日志文件,然后将过期的数据从log中移除,由于Kafka使用硬盘存储日志文件,因此使用Kafka长时间缓存一些日志文件是不存在问题的。
在消费者消费Topic中数据的时候,每个消费者会维护本次消费对应分区的偏移量,消费者会在消费完一个批次的数据之后,会将本次消费的偏移量提交给Kafka集群,因此对于每个消费者而言可以随意的控制改消费者的偏移量。因此在Kafka中,消费者可以从一个topic分区中的任意位置读取队列数据,由于每个消费者控制了自己的消费的偏移量,因此多个消费者之间彼此相互独立。
Kafka中对Topic实现日志分区的有以下目的:
- 首先,它们允许日志扩展到超出单个服务器所能容纳的大小。每个单独的分区都必须适合托管它的服务器,但是一个Topic可能有很多分区,因此它可以处理任意数量的数据。
- 其次每个服务器充当其某些分区的Leader,也可能充当其他分区的Follwer,因此群集中的负载得到了很好的平衡。
5、生产者&消费者
消费者使用Consumer Group名称标记自己,并且发布到Topic的每条记录都会传递到每个订阅Consumer Group中的一个消费者实例。如果所有Consumer实例都具有相同的Consumer Group,那么Topic中的记录会在改ConsumerGroup中的Consumer实例进行均分消费;如果所有Consumer实例具有不同的ConsumerGroup,则每条记录将广播到所有Consumer Group进程。
更常见的是,我们发现Topic具有少量的Consumer Group,每个Consumer Group可以理解为一个 “逻辑的订阅者”。每个Consumer Group均由许多Consumer实例组成,以实现可伸缩性和容错能力。这无非就是发布-订阅模型,其中订阅者是消费者的集群而不是单个进程。这种消费方式Kafka 会将Topic按照分区的方式均分给一个Consumer Group下的实例,如果ConsumerGroup下有新的成员介入,则新介入的Consumer实例会去接管ConsumerGroup内其他消费者负责的某些分区,同样如果一下ConsumerGroup下的有其他Consumer实例宕机,则由改ConsumerGroup其他实例接管。
由于Kafka的Topic的分区策略,因此Kafka仅提供分区中记录的有序性,也就意味着相同Topic的不同分区记录之间无顺序。因为针对于绝大多数的大数据应用和使用场景, 使用分区内部有序或者使用key进行分区策略已经足够满足绝大多数应用场景。但是,如果您需要记录全局有序,则可以通过只有一个分区Topic来实现,尽管这将意味着每个ConsumerGroup只有一个Consumer进程。
6、高性能-顺序写&mmap
Kafka的特性之一就是高吞吐率,但是Kafka的消息是保存或缓存在磁盘上的,一般认为在磁盘上读写数据是会降低性能的,但是Kafka即使是普通的服务器,Kafka也可以轻松支持每秒百万级的写入请求,超过了大部分的消息中间件,这种特性也使得Kafka在日志处理等海量数据场景广泛应用。Kafka会把收到的消息都写入到硬盘中,防止丢失数据。为了优化写入速度Kafka采用了两个技术顺序写入和MMFile 。
因为硬盘是机械结构,每次读写都会寻址->写入,其中寻址是一个“机械动作”,它是最耗时的。所以硬盘最讨厌随机I/O,最喜欢顺序I/O。为了提高读写硬盘的速度,Kafka就是使用顺序I/O。这样省去了大量的内存开销以及节省了IO寻址的时间。但是单纯的使用顺序写入,Kafka的写入性能也不可能和内存进行对比,因此Kafka的数据并不是实时的写入硬盘中。
Kafka充分利用了现代操作系统分页存储来利用内存提高I/O效率。Memory Mapped Files(后面简称 mmap)也称为内存映射文件,在64位操作系统中一般可以表示20G的数据文件,它的工作原理是直接利用操作系统的Page实现文件到物理内存的直接映射。完成MMP映射后,用户对内存的所有操作会被操作系统自动的刷新到磁盘上,极大地降低了IO使用率。
7、Zero Copy
Kafka服务器在响应客户端读取的时候,底层使用ZeroCopy技术,直接将磁盘无需拷贝到用户空
间,而是直接将数据通过内核空间传递输出,数据并没有抵达用户空间。
传统IO操作
- 1.用户进程调用READ等系统调用向操作系统发出IO请求,请求读取数据到自己的内存缓冲区中。自己进入阻塞状态。
- 2.操作系统收到请求后,进一步将IO请求发送磁盘。
- 3.磁盘驱动器收到内核的IO请求,把数据从磁盘读取到驱动器的缓冲中。此时不占用CPU。当驱动器的缓冲区被读满后,向内核发起中断信号告知自己缓冲区已满。
- 4.内核收到中断,使用CPU时间将磁盘驱动器的缓存中的数据拷贝到内核缓冲区中。
- 5.如果内核缓冲区的数据少于用户申请的读的数据,重复步骤3跟步骤4,直到内核缓冲区的数据足够多为止。
- 6.将数据从内核缓冲区拷贝到用户缓冲区,同时从系统调用中返回。完成任务
8、DMA读取
- 1.用户进程调用READ等系统调用向操作系统发出IO请求,请求读取数据到自己的内存缓冲区中。自己进入阻塞状态。
- 2.操作系统收到请求后,进一步将IO请求发送DMA。然后让CPU干别的活去。
- 3.DMA进一步将IO请求发送给磁盘。
- 4.磁盘驱动器收到DMA的IO请求,把数据从磁盘读取到驱动器的缓冲中。当驱动器的缓冲区被读满后,向DMA发起中断信号告知自己缓冲区已满。
- 4.DMA收到磁盘驱动器的信号,将磁盘驱动器的缓存中的数据拷贝到内核缓冲区中。此时不占用CPU。这个时候只要内核缓冲区的数据少于用户申请的读的数据,内核就会一直重复步骤3跟步骤4,直到内核缓冲区的数据足够多为止。
- 5.当DMA读取了足够多的数据,就会发送中断信号给CPU。
- 6.CPU收到DMA的信号,知道数据已经准备好,于是将数据从内核拷贝到用户空间,系统调用返回。
跟IO中断模式相比,DMA模式下,DMA就是CPU的一个代理,它负责了一部分的拷贝工作, 从而减轻了CPU的负担。DMA的优点就是:中断少,CPU负担低。
9、网络IO
一般方案
1、文件在磁盘中数据被copy到内核缓冲区
2、从内核缓冲区copy到用户缓冲区
3、用户缓冲区copy到内核与socket相关的缓冲区。
4、数据从socket缓冲区copy到相关协议引擎发送出去
Zero拷贝
1、文件在磁盘中数据被copy到内核缓冲区
2、从内核缓冲区copy到内核与socket相关的缓冲区。 3、数据从socket缓冲区copy到相关协议引擎发送出去
二、Kafka环境搭建& Topic管理
1、环境搭建-集群
安装JDK,配置JAVA_HOME
配置主机名和IP映射
关闭防火墙&防火墙开机自启动
同步时钟 ntpdate cn.pool.ntp.org | NTP[1-7].aliyun.com
安装&启动Zookeeper
安装&启动|关闭Kafka
2、Topic管理
#创建
./bin/kafka-topics.sh
--bootstrap-server CentOSA:9092,CEntOSB:9092,CentOSC:9092
--create
--topic topic02
--partitions 3
--replication-factor 3
#查看
./bin/kafka-topics.sh
--bootstrap-server CentOSA:9092,CentOSB:9092,CentOSC:9092
--list
#详情
./bin/kafka-topics.sh
--bootstrap-server CentOSA:9092,CEntOSB:9092,CentOSC:9092
--describe
--topic topic01
#修改
./bin/kafka-topics.sh
--bootstrap-server CentOSA:9092,CentOSB:9092,CentOSC:9092
--create
--topic topic03
--partitions 1
--replication-factor 1
./bin/kafka-topics.sh
--bootstrap-server CentOSA:9092,CentOSB:9092,CentOSC:9092
--alter
--topic topic03
--partitions 2
#删除
./bin/kafka-topics.sh
--bootstrap-server CentOSA:9092,CENTOSB:9092,CENTOSC:9092
--delete
--topic topic03
#订阅
./bin/kafka-console-consumer.sh
--bootstrap-server CentOSA:9092,CentOSB:9092,CentOSC:9092
--topic topiC01
--group G1
--property print.key=true
--property print.value=true
--property key.separator=,
#生产
./bin/kafka-console-producer.sh
--broker-list CentOSA:9092,CentOSB:9092,CentOSC:9092
--topic topiC01
#消费组
./bin/kafka-consumer-groups.sh
--bootstrap-server CentOSA:9092,CentOSB:9092,CentOSC:9092
--list G1
./bin/kafka-consumer-groups.sh
--bootstrap-server CentOSA:9092,CEntOSB:9092,CentOSC:9092
--describe
--group G1
三、Kafka 高级API
1、Offset自动控制
Kafka消费者默认对于未订阅的topic的offset的时候,也就是系统并没有存储该消费者的消费分区的记录信息,默认Kafka消费者的默认首次消费策略:latestauto.offset.reset=latest
earliest - 自动将偏移量重置为最早的偏移量
latest - 自动将偏移量重置为最新的偏移量
none - 如果未找到消费者组的先前偏移量,则向消费者抛出异常
Kafka消费者在消费数据的时候默认会定期的提交消费的偏移量,这样就可以保证所有的消息至少可以被消费者消费1次,用户可以通过以下两个参数配置:
enable.auto.commit = true 默认
auto.commit.interval.ms = 5000 默认
如果用户需要自己管理offset的自动提交,可以关闭offset的自动提交,手动管理offset提交的偏移量,注意用户提交的offset偏移量永远都要比本次消费的偏移量+1,因为提交的offset是 kafka消费者下一次抓取数据的位置。
2、Acks & Retries
Kafka生产者在发送完一个的消息之后,要求Broker在规定的额时间Ack应答答,如果没有在规定时间内应答,Kafka生产者会尝试n次重新发送消息。
acks=1 默认
acks=1 - Leader会将Record写到其本地日志中,但会在不等待所有Follower的完全确认的情况下做出响应。在这种情况下,如果Leader在确认记录后立即失败,但在Follower复制记录之前失败,则记录将丢失。
acks=0 - 生产者根本不会等待服务器的任何确认。该记录将立即添加到套接字缓冲区中并视为已发送。在这种情况下,不能保证服务器已收到记录。
acks=all - 这意味着Leader将等待全套同步副本确认记录。这保证了只要至少一个同步副本仍处于活动状态,记录就不会丢失。这是最有力的保证。这等效于acks= -1设置。
如果生产者在规定的时间内,并没有得到Kafka的Leader的Ack应答,Kafka可以开启reties机制。
request.timeout.ms = 30000 默认
retries = 2147483647 默认
3、幂等性
HTTP/1.1中对幂等性的定义是:一次和多次请求某一个资源对于资源本身应该具有同样的结果(网络超时等问题除外)。也就是说,其任意多次执行对资源本身所产生的影响均与一次执行的影响相同。
Methods can also have the property of “idempotence” in that (aside from error or expiration issues) the side-effects of N > 0 identical requests is the same as for a single request.
Kafka在0.11.0.0版本支持增加了对幂等的支持。幂等是针对生产者角度的特性。幂等可以保证上生产者发送的消息,不会丢失,而且不会重复。实现幂等的关键点就是服务端可以区分请求是否重复,过滤掉重复的请求。要区分请求是否重复的有两点:
唯一标识:要想区分请求是否重复,请求中就得有唯一标识。例如支付请求中,订单号就是唯一标识
记录下已处理过的请求标识:光有唯一标识还不够,还需要记录下那些请求是已经处理过的,这样当收到新的请求时,用新请求中的标识和处理记录进行比较,如果处理记录中有相同的标识,说明是重复记录,拒绝掉。
幂等又称为exactly once。要停止多次处理消息,必须仅将其持久化到Kafka Topic中仅仅一次。在初始化期间,kafka会给生产者生成一个唯一的ID称为Producer ID或PID。
PID和序列号与消息捆绑在一起,然后发送给Broker。由于序列号从零开始并且单调递增,因此,仅当消息的序列号比该PID / TopicPartition对中最后提交的消息正好大1时, Broker才会接受该消息。如果不是这种情况,则Broker认定是生产者重新发送该消息。
enable.idempotence= false 默认
注意:在使用幂等性的时候,要求必须开启retries=true和acks=all
4、事务控制
Kafka的幂等性,只能保证一条记录的在分区发送的原子性,但是如果要保证多条记录(多分区)之间的完整性,这个时候就需要开启kafk的事务操作。
在KafkA0.11.0.0除了引入的幂等性的概念,同时也引入了事务的概念。通常Kafka的事务分为 生产者事务Only、消费者&生产者事务。一般来说默认消费者消费的消息的级别是 read_uncommited数据,这有可能读取到事务失败的数据,所有在开启生产者事务之后,需要用户设置消费者的事务隔离级别。
isolation.level = read_uncommitted 默认
该选项有两个值read_committed|read_uncommitted,如果开始事务控制,消费端必须将事务的隔离级别设置为read_committed
开启的生产者事务的时候,只需要指定transactional.id属性即可,一旦开启了事务,默认生产者就已经开启了幂等性。但是要求"transactional.id"的取值必须是唯一的,同一时刻只能有一个"transactional.id"存储在,其他的将会被关闭。
四、Kafka 架构进阶
1、数据同步机制
Kafka的Topic被分为多个分区,分区是是按照Segments存储文件块。分区日志是存储在磁盘上的日志序列,Kafka可以保证分区里的事件是有序的。其中Leader负责对应分区的读写、Follower负责同步分区的数据,0.11 版本之前Kafka使用highwatermarker机制保证数据的同步,但是基于highwatermarker的同步数据可能会导致数据的不一致或者是乱序。在Kafka数据同步有以下概念。
LEO:log end offset 标识的是每个分区中最后一条消息的下一个位置,分区的每个副本都有自己的LEO.
HW: high watermarker称为高水位线,所有HW之前的的数据都理解是已经备份的,当所有节点都备 份成功,Leader会更新水位线。
ISR:In-sync-replicas,kafka的leader会维护一份处于同步的副本集和,如果在`replica.lag.time.max.ms`时间内系统没有发送fetch请求,或者已然在发送请求,但是在该限定时间内没有赶上Leader的数据就被剔除ISR列表。在Kafka-0.9.0版本剔除`replica.lag.max.messages`消息个数限定,因为这个会导致其他的Broker节点频繁的加入和退出ISR。
①:High Watermark Truncation followed by Immediate Leader Election(数据丢失)
②: Replica Divergence on Restart after Multiple Hard Failures(数据不一致)
kafka-0.11+版本
0.11版本之前Kafka的副本备份机制 的设计存在问题。依赖HW的概念实现数据同步,但是存在数据不一致问题和丢失数据问 题,因此Kafka-0.11版本引入了Leader Epoch解决这个问题,不在使用HW作为数据截断的依据。而是已引入了Leader epoch的概念,任意一个Leader持有一个LeaderEpoch。该 LeaderEpoch这是一个由Controller管理的32位数字,存储在Zookeeper的分区状态信息中,并作为LeaderAndIsrRequest的一部分传递给每个新的Leader。Leader接受Producer请求数据上使用LeaderEpoch标记每个Message。然后,该LeaderEpoch编号将通过复制协议传播,并用于替换HW标记,作为消息截断的参考点。
2、数据同步机制-Leader Epoch
改进消息格式,以便每个消息集都带有一个4字节的Leader Epoch号。在每个日志目录中,会创建一个新的Leader Epoch Sequence文件,在其中存储Leader Epoch的序列和在该Epoch中生成的消息的Start Offset。它也缓存在每个副本中,也缓存在内存中。
follower变成Leader
当Follower成为Leader时,它首先将新的Leader Epoch和副本的LEO添加到Leader Epoch Sequence序列文件的末尾并刷新数据。给Leader产生的每个新消息集都带有新的“Leader Epoch”标记。
Leader变成Follower
如果需要需要从本地的Leader Epoch Sequence加载数据,将数据存储在内存中,给相应的分区的Leader发送epoch 请求,该请求包含最新的EpochID,StartOffset信息.Leader接收到信息以后返回该EpochID所对应的LastOffset信息。该信 息可能是最新EpochID的StartOffset或者是当前EpochID的Log End Offset信息.
情形1:Fllower的Offset比Leader的小
情形2:用户的Leader Epoch的信息startOffset信息比Leader返回的LastOffset要大,Follower回去重置自己的Leader Epoch文件,将Offset修改为Leader的LastOffset信息,并且截断自己的日志信息。
Follower在提取过程中,如果关注者看到的LeaderEpoch消息集大于其最新的LeaderEpoch,则会在其LeaderEpochSequence中添加新的LeaderEpoch和起始偏移量,并将Epoch数据文件刷新到磁盘。同时将Fetch的日志信息刷新到本地日志文件。