machine learning----->有监督学习和无监督学习的区别

1.有监督学习和无监督学习的区别:

  1.1概述:

      1. 有监督学习是知道变量值(数据集)和结果(已知结果/函数值),但是不知道函数样式(函数表达式)的情况下通过machine learning(ML)获得正确的函数表达式(算法)。也即 需要部分数据集已经有正确答案,才可以推算出正确的函数表达式。比如给定房价数据集, 对于里面每个数据,算法都知道对应的正确房价, 即这房子实际卖出的价格。机器学习通过一定的分析,找到数据集与结果集之间存在的关系(算法)。找到正确的算法之后,你就可以应用该算法来计算出更多的正确价格,比如再来一个新房子,通过你的算法得出它的合理售价。
      2. 无监督学习是只知道变量值,不知道函数关系式也不知道结果值的情况下通过ML获得正确函数(算法)。Unsupervised learning allows us to approach problems with little or no idea what our results should look like.也就是说,无监督学习中只有一个数据集,其他什么都不知道,我们甚至不知道what our results should look like 。Unsupervised Learning可以从这个给定的数据集中找到某种规律(某种结构)。 例如,对于给定的数据集 无监督学习算法可能判定 该数据集包含两个不同的聚类

  1.2下面一些文章对这个话题解释得较为详细:

        1)有趣的机器学习

        2)斯坦福大学机器学习相关教程

  1.3 小结

        •    

           

             

posted on 2016-12-22 11:21  LXRM-JavaWeb、ML  阅读(486)  评论(0编辑  收藏  举报

导航