题意:给出一个n*n的矩阵,然后m个operation,1表示坐标(x,y)的值加z,2表示与坐标(x,y)的曼哈顿距离不超过z的点的权值和。
解题思路:将矩阵側过来45度。发现询问的时候,有效的点构成的事实上是一个矩阵。
然后就变成了单点改动。求矩阵和的问题。
我们考虑裸二维树状数组的做法。会发现矩阵太大,可是注意到,初始的时候,矩阵里面全部的值都为0,那么这个二维树状数组中。有效的点就是改动的那些点,以及掌控这些点的区间。这里总的状态数仅仅有m*logn*logn。所以我们把operation都拿出来,然后将有改动的状态映射到序列中就可以。
代码:
#include<stdio.h> #include<string.h> #include<algorithm> #include<vector> #define lowbit(x) (x&(-x)) using namespace std ; struct Operation { int op , x , y , z ; } p[88888] ; int base = 100000 ; const int N = 2222222 ; vector<int> mp ; int val[N] , tot , n , m ; const int maxn = 22222 ; inline int get ( int x , int y ) { x = x * base + y ; y = lower_bound(mp.begin(),mp.end(),x) - mp.begin() ; if ( y == tot || mp[y] != x ) return -1 ; return y ; } void update ( int x , int y , int z ) { while ( x < n*2+100 ) { int pos = y ; while ( pos < n*2+100 ) { int now = get (x,pos) ; val[now] += z ; pos += lowbit ( pos ) ; } x += lowbit ( x ) ; } } int sum ( int x , int y ) { int ret = 0 ; while ( x ) { int pos = y ; while ( pos ) { int now = get ( x , pos ) ; if (now != -1) ret += val[now] ; pos -= lowbit ( pos ) ; } x -= lowbit ( x ) ; } return ret ; } int query ( int x1 , int y1 , int x2 , int y2 ) { int ret1 = sum(x1-1,y1-1) , ret2 = sum(x2,y2) , ret3 = sum(x1-1,y2) , ret4 = sum(x2,y1-1) ; // printf ( "ret2 = %d\n" , ret2 ) ; return ret1+ret2-ret3-ret4 ; } int get_num () { int n = 0 , flag = 1 ; char c ; while ( (c = getchar ()) && c != '-' && (c<'0'||c>'9') ) ; if ( c == '-' ) flag = -1 ; else n = c - '0' ; while ( (c = getchar ()) && c >= '0' && c <= '9' ) n = n * 10 + c - '0' ; return n * flag ; } void add ( int t , int x , int y ) { while ( x < n*2+100 ) { int pos = y ; while ( pos < n*2+100 ) { // if ( tot == N - 1 ) while (1) ; mp.push_back ( x * base + pos ) ; pos += lowbit ( pos ) ; } x += lowbit ( x ) ; } } void read ( int i ) { p[i].op = get_num () ; p[i].x = get_num () ; p[i].y = get_num () ; p[i].z = get_num () ; int x = p[i].x + p[i].y - 1 , y = n - p[i].x + p[i].y ; if ( p[i].op == 1 ) add ( 1 , x , y ) ; } int main () { while ( scanf ( "%d" , &n ) && n ) { scanf ( "%d" , &m ) ; mp.clear () ; memset ( val , 0 , sizeof ( val ) ) ; for ( int i = 1 ; i <= m ; i ++ ) read ( i ) ; sort ( mp.begin() , mp.end() ) ; vector<int>::iterator it = unique(mp.begin() , mp.end()) ; mp.erase(it,mp.end()) ; // tot = unique ( mp + 1 , mp + tot + 1 ) - mp - 1 ; tot = mp.size () ; for ( int i = 1 ; i <= m ; i ++ ) { int op , x , y , z ; op = p[i].op ; x = p[i].x ; y = p[i].y ; z = p[i].z ; // printf ( "op = %d , x = %d , y = %d , z = %d\n" , op , x , y , p[i].z ) ; int xx = x + y - 1 , yy = n - x + y ; if ( op == 1 ) { update ( xx , yy , z ) ; } else { int x1 = std::max ( 1 , xx - z ) ; int y1 = std::max ( 1 , yy - z ) ; int x2 = std::min ( 2*n-1 , xx + z ) ; int y2 = std::min ( 2*n-1 , yy + z ) ; printf ( "%d\n" , query ( x1 , y1 , x2 , y2 ) ) ; } } } return 0 ; }