本博文採用Xilinx HLS 2014.4工具。实现一个肤色检測的模块。当中,本文重点是构建HLS图像处理函数。
新建HLSproject的步骤,本博文不再详述。
本project新建之后,仅仅加入了五个文件,例如以下图所看到的。当中,top.cpp中的主函数终于会综合生成HLS硬件图像处理模块。test.cpp是測试文件,调用測试图片。測试top.cpp的图像处理函数功能。
top.cpp的源代码例如以下:
#include "top.h" #include "imgprocess.h" #include <string.h> void ImgProcess_Top(AXI_STREAM& input, AXI_STREAM& output,int rows, int cols, int y_lower,int y_upper,int cb_lower,int cb_upper,int cr_lower,int cr_upper) { #pragma HLS RESOURCE variable=input core=AXIS metadata="-bus_bundle INPUT_STREAM" #pragma HLS RESOURCE variable=output core=AXIS metadata="-bus_bundle OUTPUT_STREAM" #pragma HLS RESOURCE core=AXI_SLAVE variable=rows metadata="-bus_bundle CONTROL_BUS" #pragma HLS RESOURCE core=AXI_SLAVE variable=cols metadata="-bus_bundle CONTROL_BUS" #pragma HLS RESOURCE core=AXI_SLAVE variable=y_lower metadata="-bus_bundle CONTROL_BUS" #pragma HLS RESOURCE core=AXI_SLAVE variable=y_upper metadata="-bus_bundle CONTROL_BUS" #pragma HLS RESOURCE core=AXI_SLAVE variable=cb_lower metadata="-bus_bundle CONTROL_BUS" #pragma HLS RESOURCE core=AXI_SLAVE variable=cb_upper metadata="-bus_bundle CONTROL_BUS" #pragma HLS RESOURCE core=AXI_SLAVE variable=cr_lower metadata="-bus_bundle CONTROL_BUS" #pragma HLS RESOURCE core=AXI_SLAVE variable=cr_upper metadata="-bus_bundle CONTROL_BUS" #pragma HLS RESOURCE core=AXI_SLAVE variable=return metadata="-bus_bundle CONTROL_BUS" #pragma HLS INTERFACE ap_stable port=rows #pragma HLS INTERFACE ap_stable port=cols #pragma HLS INTERFACE ap_stable port=y_lower #pragma HLS INTERFACE ap_stable port=y_upper #pragma HLS INTERFACE ap_stable port=cb_lower #pragma HLS INTERFACE ap_stable port=cb_upper #pragma HLS INTERFACE ap_stable port=cr_lower #pragma HLS INTERFACE ap_stable port=cr_upper RGB_IMAGE src_mat(rows,cols); RGB_IMAGE dst_mat(rows,cols); #pragma HLS dataflow hls::AXIvideo2Mat(input, src_mat); SkinColorDetect(src_mat,dst_mat, y_lower, y_upper, cb_lower, cb_upper, cr_lower, cr_upper); hls::Mat2AXIvideo(dst_mat, output); }当中。ImgProcess_Top这个函数最后生成一个IP核,能够放在图像通路中使用。函数的接口例如以下:
input:视频流输入,axi-stream接口;
output:视频流输出,axi-stream接口;
rows,cols:可配置參数,图像的行数、列数。
通过AXI-Lite接口,由PS配置。
y_lower,y_upper,cb_lower,cb_upper,cr_lower,cr_upper:可配置參数,肤色检測的一些阈值。通过AXI-Lite接口。由PS配置。
上述代码中,比較重要的一条优化指令为:#pragma HLS dataflow。
它使得任务之间为流水线方式,也就是hls::AXIvideo2Mat(input, src_mat);SkinColorDetect(src_mat,dst_mat, y_lower, y_upper, cb_lower, cb_upper, cr_lower, cr_upper);hls::Mat2AXIvideo(dst_mat, output);这三个函数之间为流水线方式运行。
肤色检測的核心函数为SkinColorDetect(src_mat,dst_mat, y_lower, y_upper, cb_lower, cb_upper, cr_lower, cr_upper);它包括在imgprocess.h源代码例如以下:
#ifndef ___IMAGEPROCESS__ #define ___IMAGEPROCESS__ #include "top.h" u1 rgb2ycbcr(u8 B, u8 G, u8 R, int y_lower, int y_upper, int cb_lower, int cb_upper, int cr_lower, int cr_upper) { #pragma HLS PIPELINE u8 y, cr, cb; y = (76 * R.to_int() + 150 * G.to_int() + 29 * B.to_int()) >> 8; cb = 128 + ((128*B.to_int() -43*R.to_int() - 85*G.to_int())>>8); cr = 128 + ((128*R.to_int() -107*G.to_int() - 21 * B.to_int())>>8); if (y > y_lower && y < y_upper && cb > cb_lower && cb < cb_upper && cr > cr_lower && cr < cr_upper) return 1; else return 0; } namespace hls { template<int SRC_T, int DST_T,int ROW, int COL> void ImgProcess(Mat<ROW, COL, SRC_T> &_src, Mat<ROW, COL, DST_T> &_dst, int y_lower,int y_upper,int cb_lower,int cb_upper,int cr_lower,int cr_upper) { loop_height: for(HLS_SIZE_T i= 0;i< ROW;i++) { #pragma HLS LOOP_TRIPCOUNT max=ROW loop_width: for (HLS_SIZE_T j= 0;j< COL;j++) { #pragma HLS LOOP_FLATTEN OFF #pragma HLS LOOP_TRIPCOUNT max=COL #pragma HLS DEPENDENCE array inter false #pragma HLS PIPELINE u8 r, g, b; u1 skin_region; HLS_TNAME(SRC_T) temp0=0; HLS_TNAME(SRC_T) temp1=0; HLS_TNAME(SRC_T) temp2=0; /***********stream input *********/ _src.data_stream[0]>>temp0; _src.data_stream[1]>>temp1; _src.data_stream[2]>>temp2; b = temp0; g = temp1; r = temp2; /********detect skin region*******/ skin_region = rgb2ycbcr(b, g, r,y_lower,y_upper,cb_lower,cb_upper,cr_lower,cr_upper); HLS_TNAME(DST_T) temp_dst0=0; HLS_TNAME(DST_T) temp_dst1=0; HLS_TNAME(DST_T) temp_dst2=0; temp_dst0= (skin_region == 1)? b : (u8)0; temp_dst1= (skin_region == 1)?g : (u8)0; temp_dst2= (skin_region == 1)?
r : (u8)0; /***********stream output ********/ _dst.data_stream[0]<<temp_dst0; _dst.data_stream[1]<<temp_dst1; _dst.data_stream[2]<<temp_dst2; } } } template<int SRC_T, int DST_T,int ROW, int COL> void SkinColorDetect(Mat<ROW, COL, SRC_T> &_src,Mat<ROW, COL, DST_T> &_dst, int y_lower,int y_upper,int cb_lower,int cb_upper,int cr_lower,int cr_upper) { #pragma HLS INLINE ImgProcess(_src, _dst, y_lower, y_upper, cb_lower, cb_upper, cr_lower, cr_upper); } } #endif
核心函数是rgb2ycbcr这个函数。关于肤色检測有多种方式,本文的肤色检測方法是将rgb转换为ycbcr,然后设置阈值。
保存后,综合。
综合完成,打开分析工具:
点击红框里的内容:
能够看到imgprocess.h中,ImgProcess这个函数的运行状态:
然后点击ImgProcess_Top_rgb2ycbcr,能够看到例如以下图:
综合之后,就能够測试了。
test.cpp内容例如以下:
#include "top.h" #include "hls_opencv.h" #include"iostream" #include<time.h> using namespace std; using namespace cv; int main (int argc, char** argv) { Mat src = imread("test.jpg"); AXI_STREAM src_axi, dst_axi; Mat dst(Size(640,480),CV_8UC3); resize(src,src,Size(640,480)); //mat to axi video cvMat2AXIvideo(src, src_axi); //test function ImgProcess_Top(src_axi, dst_axi, 480, 640,0,255,80,135,131,185); //axi video to mat AXIvideo2cvMat(dst_axi, dst); imshow("src",src); imshow("dst_hls",dst); waitKey(0); return 0; }測试的图像例如以下:
执行測试程序后。输出图像例如以下:
通过測试后,点击hls界面工具栏的export RTLbutton,打包生成ip。最后的IP例如以下所看到的: