IDEA配置Hadoop开发环境&编译运行WordCount程序

有关hadoop及java安装配置请见:https://www.cnblogs.com/lxc1910/p/11734477.html

 

1、新建Java project:

选择合适的jdk,如图所示:

 

将工程命名为WordCount。

 

2、添加WordCount类文件:

在src中添加新的Java类文件,类名为WordCount,代码如下:

 1 import java.io.IOException;
 2 
 3 import java.util.StringTokenizer;
 4 
 5 import org.apache.hadoop.conf.Configuration;
 6 
 7 import org.apache.hadoop.fs.Path;
 8 
 9 import org.apache.hadoop.io.IntWritable;
10 
11 import org.apache.hadoop.io.Text;
12 
13 import org.apache.hadoop.mapreduce.Job;
14 
15 import org.apache.hadoop.mapreduce.Mapper;
16 
17 import org.apache.hadoop.mapreduce.Reducer;
18 
19 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
20 
21 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
22 
23 import org.apache.hadoop.util.GenericOptionsParser;
24 
25 public class WordCount {
26     public static class TokenizerMapper //定义Map类实现字符串分解
27             extends Mapper<Object, Text, Text, IntWritable>
28     {
29         private final static IntWritable one = new IntWritable(1);
30         private Text word = new Text();
31         //实现map()函数
32         public void map(Object key, Text value, Context context)
33                 throws IOException, InterruptedException
34         { //将字符串拆解成单词
35             StringTokenizer itr = new StringTokenizer(value.toString());
36             while (itr.hasMoreTokens())
37             { word.set(itr.nextToken()); //将分解后的一个单词写入word类
38                 context.write(word, one); //收集<key, value>
39             }
40         }
41     }
42 
43     //定义Reduce类规约同一key的value
44     public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable>
45     {
46         private IntWritable result = new IntWritable();
47         //实现reduce()函数
48         public void reduce(Text key, Iterable<IntWritable> values, Context context )
49                 throws IOException, InterruptedException
50         {
51             int sum = 0;
52             //遍历迭代values,得到同一key的所有value
53             for (IntWritable val : values) { sum += val.get(); }
54             result.set(sum);
55             //产生输出对<key, value>
56             context.write(key, result);
57         }
58     }
59 
60     public static void main(String[] args) throws Exception
61     { //为任务设定配置文件
62         Configuration conf = new Configuration();
63         //命令行参数
64         String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
65         if (otherArgs.length != 2)
66         { System.err.println("Usage: wordcount <in> <out>");
67             System.exit(2);
68         }
69         Job job = Job.getInstance(conf, "word count");//新建一个用户定义的Job
70         job.setJarByClass(WordCount.class); //设置执行任务的jar
71         job.setMapperClass(TokenizerMapper.class); //设置Mapper类
72         job.setCombinerClass(IntSumReducer.class); //设置Combine类
73         job.setReducerClass(IntSumReducer.class); //设置Reducer类
74         job.setOutputKeyClass(Text.class); //设置job输出的key
75         //设置job输出的value
76         job.setOutputValueClass(IntWritable.class);
77         //设置输入文件的路径
78         FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
79         //设置输出文件的路径
80         FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
81         //提交任务并等待任务完成
82         System.exit(job.waitForCompletion(true) ? 0 : 1);
83     }
84 
85 }

 

3、添加依赖库:

点击 File -> Project Structure -> Modules,选择Dependencies,点击加号,添加以下依赖库:

 

 

4、编译生成JAR包:

点击 File -> Project Structure ->Artifacts,点击加号->JAR->from modules with dependencies,

Mainclass选择WordCount类:

下面开始编译生成JAR包:

点击 build->build Artifacts->build,完成编译后,会发现多出一个目录output.

 

5、在hadoop系统中运行JAR包:

我之前在hadoop用户下安装了伪分布式的hadoop系统,因此首先把JAR包复制到hadoop用户目录下。

启动hadoop服务:(在hadoop安装目录的sbin文件夹下)

./start-all.sh

在hdfs下新建test-in文件夹,并放入file1.txt、file2.txt两个文件,

1 hadoop fs -mkdir test-in
2 hadoop fs -put file1.txt file2.txt test-in/

执行jar包:

1 hadoop jar WordCount.jar test-in test-out

因为之前生成JAR包时设置了主类,所以WordCount.jar后面不需要再加WordCount.

另外需要注意运行JAR包之前hdfs中不能有test-out文件夹。

 

6、查看运行结果

可通过http://localhost:50070/查看hadoop系统状况,

点击Utilities->Browse the file system即可查看hdfs文件系统:

可以看到test-out文件下有输出文件,可通过命令:

1 hadoop fs -cat test-out/part-r-00000

查看文件输出情况:

 

7、参考

https://blog.csdn.net/chaoping315/article/details/78904970

https://blog.csdn.net/napoay/article/details/68491469

https://blog.csdn.net/ouyang111222/article/details/73105086

posted @ 2019-11-05 15:00  bloglxc  阅读(2522)  评论(0编辑  收藏  举报