:)搭建公司级的chatGPTmingu-|
搭建公司级的chatGPT(业务答疑)
一 搭建对话服务平台
参考工程:gradio-app/gradio: Create UIs for your machine learning model in Python in 3 minutes (github.com)
参考链接:https://www.zhihu.com/question/454990715 ui框架难度等级都在里面
从其中的指导中,可以链接到 gradio 完整的说明文档。
https://gradio.app/
1.1 明确写明作用与特点
特点:Build Machine Learning Web Apps — in Python
1.2 写清楚作用和适用群体
作用:interactive app
1.3 开始介绍
一般分三步比较容易普及
一般 pip install gradio 肯定不需要git clone 工程
1)可以 处理 图片 audio
2)可以生成各种button
3)可以引用各种任务 如chatbot
1.4 对话
代码 gr.Chatbot
链接:Creating A Chatbot (gradio.app)
实际工程位置:/home/arm/disk_arm_8T/xiaoliu/AI610-SDK-r1p0-00eac0/GPT2_chinese_chat/GPT2-chitchat/interact_gpt2_gardio.py
一些端口不能打开, 请先关闭端口。
sudo lsof -i:<端口号>
kill -9 PID
代码:
1 import transformers 2 import torch 3 import os 4 import json 5 import random 6 import numpy as np 7 import argparse 8 # from torch.utils.tensorboard import SummaryWriter 9 from datetime import datetime 10 from tqdm import tqdm 11 from torch.nn import DataParallel 12 import logging 13 from transformers import GPT2TokenizerFast, GPT2LMHeadModel, GPT2Config 14 from transformers import BertTokenizerFast, AutoTokenizer, BertModel, BertTokenizer 15 # from transformers import BertTokenizer 16 from os.path import join, exists 17 from itertools import zip_longest, chain 18 # from chatbot.model import DialogueGPT2Model 19 # from dataset import MyDataset 20 from torch.utils.data import Dataset, DataLoader 21 from torch.nn import CrossEntropyLoss 22 # from sklearn.model_selection import train_test_split 23 import torch.nn.functional as F 24 # from gpt3 import GPT3ForCausalLM 25 import gradio as gr 26 27 PAD = '[PAD]' 28 pad_id = 0 29 30 31 def set_args(): 32 """ 33 Sets up the arguments. 34 """ 35 parser = argparse.ArgumentParser() 36 parser.add_argument('--device', default='0', type=str, required=False, help='生成设备') 37 parser.add_argument('--temperature', default=1, type=float, required=False, help='生成的temperature') 38 parser.add_argument('--topk', default=8, type=int, required=False, help='最高k选1') 39 parser.add_argument('--topp', default=0, type=float, required=False, help='最高积累概率') 40 # parser.add_argument('--model_config', default='config/model_config_dialogue_small.json', type=str, required=False, 41 # help='模型参数') 42 parser.add_argument('--log_path', default='data/interact.log', type=str, required=False, help='interact日志存放位置') 43 parser.add_argument('--vocab_path', default='vocab/vocab.txt', type=str, required=False, help='选择词库') 44 # parser.add_argument('--model_path', 45 # default='/home/arm/disk_arm_8T/xiaoliu/AI610-SDK-r1p0-00eac0/GPT2_chinese_chat/GPT2-chitchat-mmi/mmi_model/model_epoch30', type=str, required=False, help='对话模型路径') 46 # parser.add_argument('--model_path', default='model/gpt3_bashe_epoch30', type=str, required=False, help='对话模型路径') 47 parser.add_argument('--model_path', default='/home/arm/disk_arm_8T/xiaoliu/AI610-SDK-r1p0-00eac0/GPT2_chinese_chat/large-chat-GPT2/firefly-2b6', type=str, required=False, help='对话模型路径') 48 parser.add_argument('--save_samples_path', default="sample/", type=str, required=False, help="保存聊天记录的文件路径") 49 parser.add_argument('--repetition_penalty', default=1.0, type=float, required=False, 50 help="重复惩罚参数,若生成的对话重复性较高,可适当提高该参数") 51 # parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的') 52 parser.add_argument('--max_len', type=int, default=100, help='每个utterance的最大长度,超过指定长度则进行截断') 53 parser.add_argument('--max_history_len', type=int, default=5, help="dialogue history的最大长度") 54 parser.add_argument('--no_cuda', action='store_true', help='不使用GPU进行预测') 55 parser.add_argument('--server', default='10.188.72.25', type=str, required=False, help='服务器地址') 56 parser.add_argument('--port', default='7861', type=str, required=False, help='服务器访问端口') 57 parser.add_argument('--concurrency_count', default=5, type=int, required=False, help='同时访问人数') 58 return parser.parse_args() 59 60 61 def create_logger(args): 62 """ 63 将日志输出到日志文件和控制台 64 """ 65 logger = logging.getLogger(__name__) 66 logger.setLevel(logging.INFO) 67 68 formatter = logging.Formatter( 69 '%(asctime)s - %(levelname)s - %(message)s') 70 71 # 创建一个handler,用于写入日志文件 72 file_handler = logging.FileHandler( 73 filename=args.log_path) 74 file_handler.setFormatter(formatter) 75 file_handler.setLevel(logging.INFO) 76 logger.addHandler(file_handler) 77 78 # 创建一个handler,用于将日志输出到控制台 79 console = logging.StreamHandler() 80 console.setLevel(logging.DEBUG) 81 console.setFormatter(formatter) 82 logger.addHandler(console) 83 84 return logger 85 86 87 def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): 88 """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering 89 Args: 90 logits: logits distribution shape (vocab size) 91 top_k > 0: keep only top k tokens with highest probability (top-k filtering). 92 top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). 93 Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) 94 From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 95 """ 96 assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear 97 top_k = min(top_k, logits.size(-1)) # Safety check 98 if top_k > 0: 99 # Remove all tokens with a probability less than the last token of the top-k 100 # torch.topk()返回最后一维最大的top_k个元素,返回值为二维(values,indices) 101 # ...表示其他维度由计算机自行推断 102 indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] 103 logits[indices_to_remove] = filter_value # 对于topk之外的其他元素的logits值设为负无穷 104 105 if top_p > 0.0: 106 sorted_logits, sorted_indices = torch.sort(logits, descending=True) # 对logits进行递减排序 107 cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) 108 109 # Remove tokens with cumulative probability above the threshold 110 sorted_indices_to_remove = cumulative_probs > top_p 111 # Shift the indices to the right to keep also the first token above the threshold 112 sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() 113 sorted_indices_to_remove[..., 0] = 0 114 115 indices_to_remove = sorted_indices[sorted_indices_to_remove] 116 logits[indices_to_remove] = filter_value 117 return logits 118 119 # python interact.py --device 0 --vocab_path vocab/vocab3.txt --model_path model/gpt3_bashe_epoch30 --max_history_len 20 --temperature 0.9 120 def main(): 121 122 args = set_args() 123 logger = create_logger(args) 124 # 当用户使用GPU,并且GPU可用时 125 args.cuda = torch.cuda.is_available() and not args.no_cuda 126 device = 'cuda:0' if args.cuda else 'cpu' 127 logger.info('using device:{}'.format(device)) 128 os.environ["CUDA_VISIBLE_DEVICES"] = args.device 129 tokenizer = BertTokenizerFast(vocab_file=args.vocab_path, sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]") 130 model = GPT2LMHeadModel.from_pretrained(args.model_path, ignore_mismatched_sizes=True) 131 132 model = model.to(device) 133 model.eval() 134 server_name = args.server 135 # int need 136 sever_port = int(args.port) 137 if args.save_samples_path: 138 if not os.path.exists(args.save_samples_path): 139 os.makedirs(args.save_samples_path) 140 samples_file = open(args.save_samples_path + '/samples.txt', 'a', encoding='utf8') 141 samples_file.write("聊天记录{}:\n".format(datetime.now())) 142 # 存储聊天记录,每个utterance以token的id的形式进行存储 143 history = [] 144 print('开始和chatbot聊天,输入CTRL + Z以退出') 145 146 def chat(gradio_history): 147 user_input = gradio_history[-1][0] 148 if args.save_samples_path: 149 samples_file.write("user:{}\n".format(user_input)) 150 text_ids = tokenizer.encode(user_input, add_special_tokens=False) 151 history.append(text_ids) 152 input_ids = [tokenizer.cls_token_id] # 每个input以[CLS]为开头 153 154 for history_id, history_utr in enumerate(history[-args.max_history_len:]): 155 input_ids.extend(history_utr) 156 input_ids.append(tokenizer.sep_token_id) 157 input_ids = torch.tensor(input_ids).long().to(device) 158 input_ids = input_ids.unsqueeze(0) 159 response = [] # 根据context,生成的response 160 # 最多生成max_len个token 161 for _ in range(args.max_len): 162 outputs = model(input_ids=input_ids) 163 logits = outputs.logits 164 # logits = outputs.last_hidden_state 165 # print(logits) 166 next_token_logits = logits[0, -1, :] 167 # 对于已生成的结果generated中的每个token添加一个重复惩罚项,降低其生成概率 168 for id in set(response): 169 next_token_logits[id] /= args.repetition_penalty 170 next_token_logits = next_token_logits / args.temperature 171 # 对于[UNK]的概率设为无穷小,也就是说模型的预测结果不可能是[UNK]这个token 172 next_token_logits[tokenizer.convert_tokens_to_ids('[UNK]')] = -float('Inf') 173 filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=args.topk, top_p=args.topp) 174 # torch.multinomial表示从候选集合中无放回地进行抽取num_samples个元素,权重越高,抽到的几率越高,返回元素的下标 175 next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) 176 if next_token == tokenizer.sep_token_id: # 遇到[SEP]则表明response生成结束 177 break 178 response.append(next_token.item()) 179 input_ids = torch.cat((input_ids, next_token.unsqueeze(0)), dim=1) 180 # his_text = tokenizer.convert_ids_to_tokens(curr_input_tensor.tolist()) 181 # print("his_text:{}".format(his_text)) 182 history.append(response) 183 text = tokenizer.convert_ids_to_tokens(response) 184 chatbot_output = "".join(text) 185 print("chatbot:" + chatbot_output) 186 gradio_history[-1][1] = chatbot_output 187 if args.save_samples_path: 188 samples_file.write("chatbot:{}\n".format("".join(text))) 189 return gradio_history 190 191 def user(user_message, history): 192 return "", history + [[user_message, None]], user_message 193 194 try: 195 196 with gr.Blocks() as demo: 197 chatbot = gr.Chatbot([], elem_id="chatbot").style(height=500) 198 msg = gr.Textbox(label="User") 199 clear = gr.Button("Clear") 200 # user_input = '' 201 msg.submit(user, [msg, chatbot], 202 [msg, chatbot], 203 queue=False).then( 204 chat, chatbot, chatbot 205 ) 206 clear.click(lambda: None, None, chatbot, queue=False) 207 demo.queue(concurrency_count=3).launch(share=True, 208 server_port=sever_port, 209 server_name=server_name) 210 211 except KeyboardInterrupt: 212 if args.save_samples_path: 213 samples_file.close() 214 gr.close_all() 215 216 if __name__ == '__main__': 217 main() 218 219
1.5 web
demoweb
import gradio as gr import random def demo(name): return name + "是一个小宝贝小天才" + ":)" # def gameplay(sample): # if sample=="1": # games = ["刮鼻子","拉耳朵", # "蹲起20","单脚站20", # "跑一圈","跑两圈","保留"] # res = random.choices(games, k=int(sample)) # return "please " + ",".join(res) + "!" def gameplay(sample): if sample=="1": games = ["刮鼻子","拉耳朵", "蹲起20","单脚站20", "跑一圈","跑两圈","保留"] res = random.choices(games, k=1) elif sample == "2": games = ["qinqin","baobao", "louzhe","pazhang", "跑一圈","qinlian","保留"] res = random.choices(games, k=1) return "please " + ",".join(res) + "!" obj = gr.Interface(fn=gameplay, inputs="text", outputs="text") # obj.launch() #share=True,server_port=sever_port,server_name=server_name obj.launch(share=True,server_port=7861,server_name="10.188.72.25")
interact_gradio.py
import transformers import torch import os import json import random import numpy as np import argparse # from torch.utils.tensorboard import SummaryWriter from datetime import datetime from tqdm import tqdm from torch.nn import DataParallel import logging from transformers import GPT2TokenizerFast, GPT2LMHeadModel, GPT2Config from transformers import BertTokenizerFast, AutoTokenizer, BertModel, BertTokenizer # from transformers import BertTokenizer from os.path import join, exists from itertools import zip_longest, chain # from chatbot.model import DialogueGPT2Model # from dataset import MyDataset from torch.utils.data import Dataset, DataLoader from torch.nn import CrossEntropyLoss # from sklearn.model_selection import train_test_split import torch.nn.functional as F # from gpt3 import GPT3ForCausalLM import gradio as gr PAD = '[PAD]' pad_id = 0 def set_args(): """ Sets up the arguments. """ parser = argparse.ArgumentParser() parser.add_argument('--device', default='0', type=str, required=False, help='生成设备') parser.add_argument('--temperature', default=1, type=float, required=False, help='生成的temperature') parser.add_argument('--topk', default=8, type=int, required=False, help='最高k选1') parser.add_argument('--topp', default=0, type=float, required=False, help='最高积累概率') # parser.add_argument('--model_config', default='config/model_config_dialogue_small.json', type=str, required=False, # help='模型参数') parser.add_argument('--log_path', default='data/interact.log', type=str, required=False, help='interact日志存放位置') parser.add_argument('--vocab_path', default='vocab/vocab.txt', type=str, required=False, help='选择词库') parser.add_argument('--model_path', default='/home/arm/disk_arm_8T/xiaoliu/AI610-SDK-r1p0-00eac0/GPT2_chinese_chat/GPT2-chitchat/model_chat1to6_bs8_lay20/min_ppl_model', type=str, required=False, help='对话模型路径') # parser.add_argument('--model_path', default='model/gpt3_bashe_epoch30', type=str, required=False, help='对话模型路径') parser.add_argument('--save_samples_path', default="sample/", type=str, required=False, help="保存聊天记录的文件路径") parser.add_argument('--repetition_penalty', default=1.0, type=float, required=False, help="重复惩罚参数,若生成的对话重复性较高,可适当提高该参数") # parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的') parser.add_argument('--max_len', type=int, default=100, help='每个utterance的最大长度,超过指定长度则进行截断') parser.add_argument('--max_history_len', type=int, default=3, help="dialogue history的最大长度") parser.add_argument('--no_cuda', action='store_true', help='不使用GPU进行预测') parser.add_argument('--server', default='10.188.72.25', type=str, required=False, help='服务器地址') parser.add_argument('--port', default='7860', type=str, required=False, help='服务器访问端口') parser.add_argument('--concurrency_count', default=5, type=int, required=False, help='同时访问人数') return parser.parse_args() def create_logger(args): """ 将日志输出到日志文件和控制台 """ logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s - %(levelname)s - %(message)s') # 创建一个handler,用于写入日志文件 file_handler = logging.FileHandler( filename=args.log_path) file_handler.setFormatter(formatter) file_handler.setLevel(logging.INFO) logger.addHandler(file_handler) # 创建一个handler,用于将日志输出到控制台 console = logging.StreamHandler() console.setLevel(logging.DEBUG) console.setFormatter(formatter) logger.addHandler(console) return logger def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (vocab size) top_k > 0: keep only top k tokens with highest probability (top-k filtering). top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear top_k = min(top_k, logits.size(-1)) # Safety check if top_k > 0: # Remove all tokens with a probability less than the last token of the top-k # torch.topk()返回最后一维最大的top_k个元素,返回值为二维(values,indices) # ...表示其他维度由计算机自行推断 indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value # 对于topk之外的其他元素的logits值设为负无穷 if top_p > 0.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) # 对logits进行递减排序 cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = filter_value return logits # python interact.py --device 0 --vocab_path vocab/vocab3.txt --model_path model/gpt3_bashe_epoch30 --max_history_len 20 --temperature 0.9 def main(): args = set_args() logger = create_logger(args) # 当用户使用GPU,并且GPU可用时 args.cuda = torch.cuda.is_available() and not args.no_cuda device = 'cuda:0' if args.cuda else 'cpu' logger.info('using device:{}'.format(device)) os.environ["CUDA_VISIBLE_DEVICES"] = args.device tokenizer = BertTokenizerFast(vocab_file=args.vocab_path, sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]") model = GPT2LMHeadModel.from_pretrained(args.model_path) model = model.to(device) model.eval() server_name = args.server sever_port = args.port if args.save_samples_path: if not os.path.exists(args.save_samples_path): os.makedirs(args.save_samples_path) samples_file = open(args.save_samples_path + '/samples.txt', 'a', encoding='utf8') samples_file.write("聊天记录{}:\n".format(datetime.now())) # 存储聊天记录,每个utterance以token的id的形式进行存储 history = [] print('开始和chatbot聊天,输入CTRL + Z以退出') def chat(gradio_history): user_input = gradio_history[-1][0] if args.save_samples_path: samples_file.write("user:{}\n".format(user_input)) text_ids = tokenizer.encode(user_input, add_special_tokens=False) history.append(text_ids) input_ids = [tokenizer.cls_token_id] # 每个input以[CLS]为开头 for history_id, history_utr in enumerate(history[-args.max_history_len:]): input_ids.extend(history_utr) input_ids.append(tokenizer.sep_token_id) input_ids = torch.tensor(input_ids).long().to(device) input_ids = input_ids.unsqueeze(0) response = [] # 根据context,生成的response # 最多生成max_len个token for _ in range(args.max_len): outputs = model(input_ids=input_ids) logits = outputs.logits # logits = outputs.last_hidden_state # print(logits) next_token_logits = logits[0, -1, :] # 对于已生成的结果generated中的每个token添加一个重复惩罚项,降低其生成概率 for id in set(response): next_token_logits[id] /= args.repetition_penalty next_token_logits = next_token_logits / args.temperature # 对于[UNK]的概率设为无穷小,也就是说模型的预测结果不可能是[UNK]这个token next_token_logits[tokenizer.convert_tokens_to_ids('[UNK]')] = -float('Inf') filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=args.topk, top_p=args.topp) # torch.multinomial表示从候选集合中无放回地进行抽取num_samples个元素,权重越高,抽到的几率越高,返回元素的下标 next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) if next_token == tokenizer.sep_token_id: # 遇到[SEP]则表明response生成结束 break response.append(next_token.item()) input_ids = torch.cat((input_ids, next_token.unsqueeze(0)), dim=1) # his_text = tokenizer.convert_ids_to_tokens(curr_input_tensor.tolist()) # print("his_text:{}".format(his_text)) history.append(response) text = tokenizer.convert_ids_to_tokens(response) chatbot_output = "".join(text) print("chatbot:" + chatbot_output) gradio_history[-1][1] = chatbot_output if args.save_samples_path: samples_file.write("chatbot:{}\n".format("".join(text))) return gradio_history def user(user_message, history): return "", history + [[user_message, None]], user_message try: with gr.Blocks() as demo: chatbot = gr.Chatbot([], elem_id="chatbot").style(height=500) msg = gr.Textbox(label="User") clear = gr.Button("Clear") # user_input = '' msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( chat, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.queue(concurrency_count=3).launch(share=True, server_port=sever_port, server_name=server_name) except KeyboardInterrupt: if args.save_samples_path: samples_file.close() gr.close_all() if __name__ == '__main__': main()
chatweb
import gradio as gr import random import time with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox(label="User") clear = gr.Button("Clear") def user(user_message, history): print(history + [[user_message, None]]) return "", history + [[user_message, None]] def bot(history): bot_message = random.choice(["run", "hit", "throw"]) history[-1][1] = bot_message time.sleep(1) return history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.launch(share=True, server_port=7861, server_name="10.188.72.25")