PYTORCH基本功-ResNet

PYTORCH基本功-ResNet

一、结构

 

 

二、原理

为什么计算差值会比计算fx更容易优化

 

 极端的例子是   真实的目标函数就是红线,训练集是上方的曲线,减去红线变为下方的 曲线。

1 训练可以减少资源

2 减法后的残差,量级减少,模型更可以专注 局部或者外轮廓的变化,会拟合得更好。

 

技巧:如果需要改变这个块的输出尺寸,需要添加一个conv1x1的卷积

 

 

import torch
import torchvision
import numpy as np
from torch import nn
from torch.nn import functional as F
class Resduial(nn.Module):
    def __init__(self,input_channels, num_channels, use_conv1x1, stride):
        super(Resduial, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=input_channels, out_channels=num_channels, kernel_size=3,padding=1, stride=stride)
        self.conv2 = nn.Conv2d(in_channels=num_channels, out_channels=num_channels,kernel_size=3, padding=1, stride=stride)
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)
        if use_conv1x1:
            self.conv1x1 = nn.Conv2d(in_channels=input_channels, out_channels=num_channels,kernel_size=1,stride=stride)
        else:
            self.conv1x1 = None

        pass
    def forward(self, x):
        import pdb; pdb.set_trace()
        #1
        y = self.conv1(x)
        y = self.bn1(y)
        y = F.relu(y)
        #2
        y = self.conv2(y)
        y = self.bn2(y)
        if self.conv1x1:
            x = self.conv1x1(x)
        y = y + x
        y = F.relu(y)
        return y
x = torch.rand(4,3,6,6)

resd = Resduial(3,3,use_conv1x1=True, stride=1)
y = resd(x)
print(y.shape)

  

bottleneck结构代码

参考链接代码:https://blog.csdn.net/hxxjxw/article/details/106582884

 

posted on 2022-04-08 15:48  lexn  阅读(61)  评论(0编辑  收藏  举报

导航