BZOJ2194: 快速傅立叶之二 (FFT)
题意:题如其名 求c_k = sigma (a_i * b_i - k)
题解:一般FFT 要满足c_k = (sigma a_i * b_k - i)的形式
于是这个题的技巧就是把b数组翻转一下 b_i = b_n - 1 - i (下标从0)
题目就变形为c_k = sigma (a_i * b_n - 1 - i + k) = c_n - 1 + k 于是就上板子了
kuangbin的板子还是很厉害的
#include <stdio.h> #include <algorithm> #include <iostream> #include <string.h> #include <math.h> using namespace std; const double PI = acos(-1.0); struct Complex { double x, y; Complex(double _x = 0.0, double _y = 0.0) { x = _x; y = _y; } Complex operator + (const Complex &b) const { return Complex(x + b.x, y + b.y); } Complex operator - (const Complex &b) const { return Complex(x - b.x, y - b.y); } Complex operator * (const Complex &b) const { return Complex(x * b.x - y * b.y, x * b.y + y * b.x); } }; void change(Complex y[], int len) { int i, j, k; for(i = 1, j = len / 2; i < len - 1; i++) { if(i < j) swap(y[i], y[j]); k = len / 2; while(j >= k) { j -= k; k /= 2; } if(j < k) j += k; } } void fft(Complex y[], int len, int on) { change(y, len); for(int h = 2; h <= len; h <<= 1) { Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h)); for(int j = 0; j < len; j += h) { Complex w(1, 0); for(int k = j; k < j + h / 2; k++) { Complex u = y[k]; Complex t = w * y[k + h / 2]; y[k] = u + t; y[k + h / 2] = u - t; w = w * wn; } } } if(on == -1) for(int i = 0; i < len; i++) y[i].x /= len; } Complex x1[400005], x2[400005]; int main() { int n; scanf("%d", &n); int nn = n; for(int i = 0; i < n; i++) { double u, v; scanf("%lf%lf", &u, &v); x1[i] = Complex(u, 0); x2[n - i - 1] = Complex(v, 0); } n = 2 * n - 1; int len = 1; while(len < n) len <<= 1; for(int i = n; i < len; i++) x1[i] = x2[i] = Complex(0.0, 0.0); fft(x1, len, 1); fft(x2, len, 1); for(int i = 0; i < len; i++) x1[i] = x1[i] * x2[i]; fft(x1, len, -1); for(int i = nn - 1; i < n; i++) printf("%d\n", (int)(x1[i].x + 0.5)); return 0; }