根据bounding box坐标框绘制mask
根据bounding box坐标框绘制mask
import os
from PIL import Image, ImageDraw
# 定义图像和标注文件夹路径
image_folder_path = r'F:\Liang\Datasets\Text_dataset\Tampered-IC13\train_img'
annotation_folder_path = r'F:\Liang\Datasets\Text_dataset\Tampered-IC13\train_gt'
# 获取图像文件夹中的所有文件
image_files = [f for f in os.listdir(image_folder_path) if os.path.isfile(os.path.join(image_folder_path, f))]
# 遍历图像文件
for image_file in image_files:
# 构建图像和标注文件的完整路径
image_path = os.path.join(image_folder_path, image_file)
annotation_file = os.path.splitext(image_file)[0] + '.txt'
annotation_path = os.path.join(annotation_folder_path, annotation_file)
# 打开图像文件
original_image = Image.open(image_path)
width, height = original_image.size
# 创建一个新的黑色图像作为mask
mask_image = Image.new('L', (width, height), 0)
draw = ImageDraw.Draw(mask_image)
# 读取标注文件并绘制bounding boxes
with open(annotation_path, 'r') as file:
for line in file:
coordinates = list(map(int, line.strip().split(',')))
x1, y1, x2, y2, _ = coordinates
draw.rectangle([x1, y1, x2, y2], fill=255, outline=255)
# # 使用mask图像裁剪原始图像
# masked_image = Image.new('RGB', (width, height), 'black')
# masked_image.paste(original_image, (0, 0), mask_image)
# 保存masked图像
image_file = image_file.replace('.jpg','.png')
mask_image.save(f'./train_mask/{image_file}')
#break
print("批量处理完成")