Generate Fake Image and Detection

Generate Fake Image and Detection

Generate Fake Image

Fake Image Detection

  • 生成内容取证:基于自注意力机制的GAN生成图像检测算法

    [JSTSP, 2020] Mi, Z., Jiang, X., Sun, T., & Xu, K. (2020). GAN-Generated Image Detection With Self-Attention Mechanism Against GAN Generator Defect. IEEE Journal of Selected Topics in Signal Processing, 14(5), 969–981.

  • With Generative Adversarial Networks (GAN)achieving realistic image generation, fake image detection research has become an imminent need. In this paper, a novel detection algorithm is designed to exploit the structural defect in GAN, taking advantage of the most vulnerable link in GAN generators – the Up-s amplingprocess conducted by the Transposed Convolution operation. The Transposed Convolution in the process will cause the lack of global information in the generated images. Therefore, the Self-Attention mechanism is adopted correspondingly, equipping the algorithm with a much better comprehension of the global information than the other current work adopting pure CNN network, which is reflected in the significant increase in the detection accuracy. With the thorough comparison to the current work and corresponding careful analysis, it is verified that our proposed algorithm outperforms other current works in the field. Also, with experiments conducted on other image-generation categories and images undergone usual real-life post-processing methods, our proposed algorithm shows decent robustness for various categories of imagesunder different reality circumstances, rather than restricted by image types and pure laboratory situation.

  • 随着生成对抗网络 (GAN) 实现逼真的图像生成,假图像检测研究已成为迫在眉睫的需求。在本文中,设计了一种新颖的检测算法来利用 GAN 中的结构缺陷,利用 GAN 生成器中最脆弱的环节——由转置卷积操作进行的 Up-s 采样过程。过程中的转置卷积会导致生成的图像缺乏全局信息。因此,相应地采用了Self-Attention机制,使算法比目前采用纯CNN网络的其他工作更好地理解全局信息,这体现在检测精度的显着提高上。通过与当前工作的彻底比较和相应的仔细分析,验证了我们提出的算法优于该领域的其他当前工作。此外,通过对其他图像生成类别和经过通常现实生活后处理方法的图像进行的实验,我们提出的算法在不同的现实环境下对各种类别的图像表现出良好的鲁棒性,而不受图像类型和纯实验室情况的限制。

  • 针对数字图像中复制粘贴篡改的定位取证新方法

    [IEEE TMM, 2020] Beijing Chen, Weijin Tan, Gouenou Coatrieux, Yuhui Zheng, and Yun-Qing Shi, “A serial image copy-move forgery localization scheme with source/target distinguishment,” IEEE Transactions on Multimedia. 2020. Online. DOI: 10.1109/TMM.2020.3026868.

  • 社交网络压缩深伪视频检测

    Juan Hu, Xin Liao, Wei Wang, and Zheng Qin, “Detecting compressedDeepfake videos in social networks using frame-temporality two-streamconvolutional network”, IEEE Transactionson Circuits and Systems for Video Technology, DOI:10.1109/TCSVT.2021.3074259, 2021.

  • 基于神经架构搜索和感知模块的图像修复取证

    H. Wu and J. Zhou, "GIID-Net: Image Inpainting Detection Network via Neural Architecture Search and Attention," in IEEE Transactions on Circuits and Systems for Video Technology, doi: 10.1109/TCSVT.2021.3075039.

  • 深度伪造视频检测:基于时域剔除3DCNN的方法

    Daichi Zhang, Chenyu Li, Fanzhao Lin, Dan Zeng, Shiming Ge*. Detecting Deepfake Videos with Temporal Dropout 3DCNN. Accepted by International Joint Conference on Artificial Intelligence (IJCAI), 2021.

  • 从数字图像到免疫图像

    Q Ying, Z Qian*, HZhou, X Zhang, H Xu, S Li,From Image to Imuge: Immunized ImageGeneration, ACM multimedia 2021

    感觉这篇的结果很有意思,可能会成为研究的点。

  • 抗压缩的伪造人脸图像检测

    Cao, S., Zou, Q., Mao, X., & Wang, Z. (2021). Metric Learning for Anti-Compression Facial Forgery Detection. http://arxiv.org/abs/2103.08397

  • 基于自监督领域自适应的JPEG压缩图像篡改定位方法

    Y. Rao, and J. Ni, “Self-supervised Domain Adaptation for Forgery Localization of JPEG Compressed Images,” IEEE International Conference on Computer Vision (ICCV), Oral, 2021.

  • CAT-NET
    Kwon, M.-J., Nam, S.-H., Yu, I.-J., Lee, H.-K., & Kim, C. (2021). Learning JPEG Compression Artifacts for Image Manipulation Detection and Localization. http://arxiv.org/abs/2108.12947

Image Inpainting

  • 基于图像重建探究SIFT特征的隐私泄漏

    H. Wu and J. Zhou, "Privacy Leakage of SIFT Features via Deep Generative Model Based Image Reconstruction," in IEEE Transactions on Information Forensics and Security, vol. 16, pp. 2973-2985, 2021, doi: 10.1109/TIFS.2021.3070427.

posted @ 2021-09-22 13:03  梁君牧  阅读(296)  评论(0编辑  收藏  举报