matplotlib

matplotlib

一、Matplotlib基础知识

Matplotlib中的基本图表包括的元素

  • x轴和y轴 axis
    水平和垂直的轴线

  • x轴和y轴刻度 tick
    刻度标示坐标轴的分隔,包括最小刻度和最大刻度

  • x轴和y轴刻度标签 tick label
    表示特定坐标轴的值

  • 绘图区域(坐标系) axes
    实际绘图的区域

  • 坐标系标题 title
    实际绘图的区域

  • 轴标签 xlabel ylabel
    实际绘图的区域

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame


包含单条曲线的图

  • 注意:y,x轴的值必须为数字
x=[1,2,3,4,5]
y=[2,4,6,8,10]
plt.plot(x,y)
[<matplotlib.lines.Line2D at 0x9c757b8>]

png

  • 绘制抛物线
x = np.linspace(-np.pi,np.pi,num=10)
y = x**2
plt.plot(x,y)
[<matplotlib.lines.Line2D at 0x9bf3eb8>]

png

  • 绘制正弦曲线图
x = x
y = np.sin(x)
plt.plot(x,y)
[<matplotlib.lines.Line2D at 0x9aecf28>]

png

包含多个曲线的图

1、连续调用多次plot函数

plt.plot(x,y)
plt.plot(x+2,y-1)
[<matplotlib.lines.Line2D at 0x98f8240>]

png

2、也可以在一个plot函数中传入多对X,Y值,在一个图中绘制多个曲线

plt.plot(x,y,x-3,y+5)
[<matplotlib.lines.Line2D at 0xa4ffa90>,
 <matplotlib.lines.Line2D at 0xa4ffbe0>]

png

将多个曲线图绘制在一个table区域中:对象形式创建表图

  • a=plt.subplot(row,col,loc) 创建曲线图
  • a.plot(x,y) 绘制曲线图
plt.subplot(221)
plt.plot(x,y)

plt.subplot(2,2,2)
plt.plot(x+1,y-3)

plt.subplot(2,2,3)
plt.plot(x+5,y+2)

plt.subplot(2,2,4)
plt.plot(x-1,y-5)
[<matplotlib.lines.Line2D at 0xbb3f7b8>]

png

参数:
- axis
- color:支持十六进制颜色
- linestyle: -- -. :
- alpha

坐标轴界限

axis方法:设置x,y轴刻度值的范围

plt.axis([xmin,xmax,ymin,ymax])

plt.plot(x,y)
plt.axis([-6,6,-2,2])
#plt.axis('off')
[-6, 6, -2, 2]

png

plt.axis('off')

关闭坐标轴

设置画布比例:plt.figure(figsize=(a,b)) a:x刻度比例 b:y刻度比例 (2:1)表示x刻度显示为y刻度显示的2倍
plt.figure(figsize=(10,5))
plt.plot(x,y)
[<matplotlib.lines.Line2D at 0xc3f2828>]

png

坐标轴标签

  • s 标签内容

  • color 标签颜色

  • fontsize 字体大小

  • rotation 旋转角度

  • plt的xlabel方法和ylabel方法 title方法

plt.plot(x,y)
plt.xlabel('xxx')
plt.ylabel('yyy')
plt.title('ttt')
Text(0.5,1,'ttt')

png

图例

legend方法

两种传参方法:

  • 分别在plot函数中增加label参数,再调用plt.legend()方法显示
  • 直接在legend方法中传入字符串列表
plt.plot(x,y,label='AAA')
plt.plot(x+3,y-4,label='BBB')
plt.legend(ncol=1,loc=3)
<matplotlib.legend.Legend at 0xc11a5c0>

png

legend的参数

- loc参数
  • loc参数用于设置图例标签的位置,一般在legend函数内
  • matplotlib已经预定义好几种数字表示的位置
字符串 数值 字符串 数值
best 0 center left 6
upper right 1 center right 7
upper left 2 lower center 8
lower left 3 upper center 9
lower right 4 center 10
right 5
- ncol参数

ncol控制图例中有几列,在legend中设置ncol

保存图片

使用figure对象的savefig函数来保存图片

fig = plt.figure()---必须放置在绘图操作之前

figure.savefig的参数选项

  • filename
    含有文件路径的字符串或Python的文件型对象。图像格式由文件扩展名推断得出,例如,.pdf推断出PDF,.png推断出PNG
    (“png”、“pdf”、“svg”、“ps”、“eps”……)
  • dpi
    图像分辨率(每英寸点数),默认为100
  • facecolor ,打开保存图片查看
    图像的背景色,默认为“w”(白色)
fig = plt.figure()

plt.plot(x,y,label='AAA')
plt.plot(x+3,y-4,label='BBB')
plt.legend(ncol=1,loc=3)

fig.savefig('./123.png',dpi=50)
---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

<ipython-input-2-75147d8e63dd> in <module>()
----> 1 fig = plt.figure()
      2 
      3 plt.plot(x,y,label='AAA')
      4 plt.plot(x+3,y-4,label='BBB')
      5 plt.legend(ncol=1,loc=3)


NameError: name 'plt' is not defined

设置plot的风格和样式

plot语句中支持除X,Y以外的参数,以字符串形式存在,来控制颜色、线型、点型等要素,语法形式为:
plt.plot(X, Y, 'format', ...)

颜色

参数color或c

plt.plot(x,y,c='red',alpha=0.5)
[<matplotlib.lines.Line2D at 0xe7ff2e8>]

png

颜色值的方式
  • 别名

    • color='r'
  • 合法的HTML颜色名

    • color = 'red'
颜色 别名 HTML颜色名 颜色 别名 HTML颜色名
蓝色 b blue 绿色 g green
红色 r red 黄色 y yellow
青色 c cyan 黑色 k black
洋红色 m magenta 白色 w white
  • HTML十六进制字符串

    • color = '#eeefff'
  • 归一化到[0, 1]的RGB元组

    • color = (0.3, 0.3, 0.4)
透明度

alpha参数

线型

参数linestyle或ls

线条风格 描述 线条风格 描述
'-' 实线 ':' 虚线
'--' 破折线 'steps' 阶梯线
'-.' 点划线 'None' / ',' 什么都不画
plt.plot(x,y,c='red',alpha=0.5,ls='steps')
[<matplotlib.lines.Line2D at 0xeb48400>]

png

线宽

linewidth或lw参数

plt.plot(x,y,c='red',alpha=0.5,ls='steps',lw=5)
[<matplotlib.lines.Line2D at 0xea15048>]

png

点型

  • marker 设置点形
  • markersize 设置点形大小
标记 描述 标记 描述
's' 正方形 'p' 五边形
'h' 六边形1 'H' 六边形2
'8' 八边形
标记 描述 标记 描述
'.' 'x' X
'*' 星号 '+' 加号
',' 像素
标记 描述 标记 描述
'o' 圆圈 'D' 菱形
'd' 小菱形 '','None',' ',None
标记 描述 标记 描述
'1' 一角朝下的三脚架 '3' 一角朝左的三脚架
'2' 一角朝上的三脚架 '4' 一角朝右的三脚架
plt.plot(x,y,c='red',alpha=0.5,lw=5,marker='h',markersize=10)
[<matplotlib.lines.Line2D at 0xceeb6d8>]

png

# 绘制线      plt.plot(x1,y1,x2,y2)
# 网格线      plt.grid(True)  axes.grid(color,ls,lw,alpha)
# 获取坐标系  plt.subplot(n1,n2,n3)
# 坐标轴标签  plt.xlabel() plt.ylabel()
# 坐标系标题  plt.title()
# 图例        plt.legend([names],ncol=2,loc=1)  plt.plot(label='name')
# 线风格      --  -. : None  step
# 图片保存    figure.savefig()
# 点的设置    marker markersize markerfacecolor markeredgecolor\width
# 坐标轴刻度  plt.xticks(刻度列表,刻度标签列表) plt.yticks()
#             axes.set_xticks(刻度列表) axes.set_xticklabels(刻度标签列表)

三、2D图形

直方图

  • 是一个特殊的柱状图,又叫做密度图。

【直方图的参数只有一个x!!!不像条形图需要传入x,y】

plt.hist()的参数

  • bins
    直方图的柱数,可选项,默认为10
  • color
    指定直方图的颜色。可以是单一颜色值或颜色的序列。如果指定了多个数据集合,例如DataFrame对象,颜色序列将会设置为相同的顺序。如果未指定,将会使用一个默认的线条颜色
  • orientation
    通过设置orientation为horizontal创建水平直方图。默认值为vertical
salary = np.array([12345,10000,15000,18000,20000,15555,10050,19999,12000,12500])
# qu = [10000,12000,15000,18000,20000]
plt.hist(salary)
(array([2., 0., 3., 0., 0., 2., 0., 0., 1., 2.]),
 array([10000., 11000., 12000., 13000., 14000., 15000., 16000., 17000.,
        18000., 19000., 20000.]),
 <a list of 10 Patch objects>)

png

返回值 :

1: 直方图向量,是否归一化由参数normed设定

2: 返回各个bin的区间范围

3: 返回每个bin里面包含的数据,是一个list

条形图:plt.bar()

  • 参数:第一个参数是索引。第二个参数是数据值。第三个参数是条形的宽度

-【条形图有两个参数x,y】

  • width 纵向设置条形宽度
  • height 横向设置条形高度

bar()、barh()

x = [1,2,3,4,5]
y = [6,7,8,9,10]

plt.barh(x,y)
<Container object of 5 artists>

png

水平条形图

barh()

饼图

【饼图也只有一个参数x】

pie()
饼图适合展示各部分占总体的比例,条形图适合比较各部分的大小

普通各部分占满饼图

普通未占满饼图:小数/比例

饼图阴影、分裂等属性设置

labels参数设置每一块的标签;

labeldistance参数设置标签距离圆心的距离(比例值)

autopct参数设置比例值小数保留位(%.3f%%);

pctdistance参数设置比例值文字距离圆心的距离

explode参数设置每一块顶点距圆心的长度(比例值,列表);

colors参数设置每一块的颜色(列表);

shadow参数为布尔值,设置是否绘制阴影

startangle参数设置饼图起始角度

arr = [0.2,0.3,0.1,0.2]
plt.pie(arr,labels=['a','b','c','d'])
([<matplotlib.patches.Wedge at 0x116dbf98>,
  <matplotlib.patches.Wedge at 0x116e54a8>,
  <matplotlib.patches.Wedge at 0x116e5978>,
  <matplotlib.patches.Wedge at 0x116e5e48>],
 [Text(0.889919,0.646564,'a'),
  Text(-0.646564,0.889919,'b'),
  Text(-1.04616,-0.339919,'c'),
  Text(-0.339919,-1.04616,'d')])

png

arr=[11,22,31,15]
plt.pie(arr,labels=['a','b','c','d'])
([<matplotlib.patches.Wedge at 0x11697cf8>,
  <matplotlib.patches.Wedge at 0x116a1208>,
  <matplotlib.patches.Wedge at 0x116a16d8>,
  <matplotlib.patches.Wedge at 0x116a1ba8>],
 [Text(0.996424,0.465981,'a'),
  Text(-0.195798,1.08243,'b'),
  Text(-0.830021,-0.721848,'c'),
  Text(0.910034,-0.61793,'d')])

png

#labeldistance参数设置标签距离圆心的距离(比例值)
arr=[11,22,31,15]
plt.pie(arr,labels=['a','b','c','d'],labeldistance=0.3)
([<matplotlib.patches.Wedge at 0x11727470>,
  <matplotlib.patches.Wedge at 0x11727940>,
  <matplotlib.patches.Wedge at 0x11727e10>,
  <matplotlib.patches.Wedge at 0x11732320>],
 [Text(0.271752,0.127086,'a'),
  Text(-0.0533994,0.295209,'b'),
  Text(-0.226369,-0.196868,'c'),
  Text(0.248191,-0.168526,'d')])

png

#autopct参数设置比例值小数保留位(%.3f%%);
arr=[11,22,31,15]
plt.pie(arr,labels=['a','b','c','d'],labeldistance=0.3,autopct='%.6f%%')
([<matplotlib.patches.Wedge at 0x1176d898>,
  <matplotlib.patches.Wedge at 0x1176df60>,
  <matplotlib.patches.Wedge at 0x11776668>,
  <matplotlib.patches.Wedge at 0x11776d30>],
 [Text(0.271752,0.127086,'a'),
  Text(-0.0533994,0.295209,'b'),
  Text(-0.226369,-0.196868,'c'),
  Text(0.248191,-0.168526,'d')],
 [Text(0.543504,0.254171,'13.924050%'),
  Text(-0.106799,0.590419,'27.848101%'),
  Text(-0.452739,-0.393735,'39.240506%'),
  Text(0.496382,-0.337053,'18.987341%')])

png

##explode参数设置每一块顶点距圆心的长度(比例值,列表);
arr=[11,22,31,15]
plt.pie(arr,labels=['a','b','c','d'],labeldistance=0.3,shadow=True,explode=[0.2,0.3,0.2,0.4])
([<matplotlib.patches.Wedge at 0x117b93c8>,
  <matplotlib.patches.Wedge at 0x117b9b38>,
  <matplotlib.patches.Wedge at 0x117c32e8>,
  <matplotlib.patches.Wedge at 0x117c3a58>],
 [Text(0.45292,0.21181,'a'),
  Text(-0.106799,0.590419,'b'),
  Text(-0.377282,-0.328113,'c'),
  Text(0.579113,-0.393228,'d')])

png

#startangle参数设置饼图起始角度
arr=[11,22,31,15]
plt.pie(arr,labels=['a','b','c','d'],startangle=50)
([<matplotlib.patches.Wedge at 0x1180a128>,
  <matplotlib.patches.Wedge at 0x1180a5f8>,
  <matplotlib.patches.Wedge at 0x1180aac8>,
  <matplotlib.patches.Wedge at 0x1180af98>],
 [Text(0.283527,1.06283,'a'),
  Text(-0.955049,0.545785,'b'),
  Text(0.0194406,-1.09983,'c'),
  Text(1.05832,0.299929,'d')])

png

%m.nf
m 占位
n 小数点后保留几位
f 是以float格式输出

散点图:因变量随自变量而变化的大致趋势

【散点图需要两个参数x,y,但此时x不是表示x轴的刻度,而是每个点的横坐标!】

scatter()

x = [33,35,34,31,36]
y = [100,200,150,166,177]

plt.scatter(x,y)
<matplotlib.collections.PathCollection at 0xff31d68>

png

x = np.linspace(10,20,num=30)
y = np.random.randint(10,20,size=(30,))

plt.scatter(x,y,c='rbgy')
<matplotlib.collections.PathCollection at 0x104f2e48>

png

plt.scatter(x,y,marker='d',c="rbgy") 设置不同的散点颜色

posted @ 2019-07-01 16:35  海予心  阅读(117)  评论(0编辑  收藏  举报