工具类
工具类特征:
- 构造器必须是私有的,工具类一般不需要初始化,可以直接使用;
- 工具类的方法必须是被static final方法修饰,保证方法不可变;
- 不要在工具类方法中对共享变量有修改的操作,如果一定要有,必须加锁保证线程安全;
- 工具类的所有方法都没有线程安全问题;
一、Arrays
Arrays主要提供了对数组的高效操作,包括排序、查找、填充、拷贝、相等判断等操作;
1、sort(int[] a)
1.1、JDK1.6
1.1.1、源码
// int类型数组排序
public static void sort(int[] a) {
sort1(a, 0, a.length);
}
private static void sort1(int x[], int off, int len) {
// Insertion sort on smallest arrays
if (len < 7) {
for (int i = off; i < len + off; i++)
for (int j = i; j > off && x[j - 1] > x[j]; j--)
swap(x, j, j - 1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3(x, l, l + s, l + 2 * s);
m = med3(x, m - s, m, m + s);
n = med3(x, n - 2 * s, n - s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
int v = x[m];
// Establish Invariant: v* (<v)* (>v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while (true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a - off, b - a);
vecswap(x, off, b - s, s);
s = Math.min(d - c, n - d - 1);
vecswap(x, b, n - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1)
sort1(x, off, s);
if ((s = d - c) > 1)
sort1(x, n - s, s);
}
/**
* Swaps x[a] with x[b].
*/
private static void swap(int x[], int a, int b) {
int t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private static void vecswap(int x[], int a, int b, int n) {
for (int i = 0; i < n; i++, a++, b++)
swap(x, a, b);
}
/**
* Returns the index of the median of the three indexed integers.
*/
private static int med3(int x[], int a, int b, int c) {
return (x[a] < x[b] ?
(x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
(x[b] > x[c] ? b : x[a] > x[c] ? c : a));
}
1.1.2、分析
- (1)数组长度小于7,那么排序时基于基本的插入排序算法
- (2)数组长度大于7,那么在使用的优化后的快速排序,对应数组长度在7和40之间的数组,取的切分元素相对来说简单点
1.2、JDK1.7
1.2.1、源码:
public static void sort(int[] a) {
DualPivotQuicksort.sort(a);
}
// 下面方法来自:java.util.DualPivotQuicksort#sort(int[])
public static void sort(int[] a) {
sort(a, 0, a.length - 1);
}
/**
* If the length of an array to be sorted is less than this
* constant, Quicksort is used in preference to merge sort.
*/
private static final int QUICKSORT_THRESHOLD = 286;
/**
* The maximum number of runs in merge sort.
*/
private static final int MAX_RUN_COUNT = 67;
/**
* The maximum length of run in merge sort.
*/
private static final int MAX_RUN_LENGTH = 33;
public static void sort(int[] a, int left, int right) {
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
}
/*
* Index run[i] is the start of i-th run
* (ascending or descending sequence).
*/
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0; run[0] = left;
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
}
/*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
}
// Check special cases
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
return;
}
/*
* Create temporary array, which is used for merging.
* Implementation note: variable "right" is increased by 1.
*/
int[] b; byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1);
if (odd == 0) {
b = a; a = new int[b.length];
for (int i = left - 1; ++i < right; a[i] = b[i]);
} else {
b = new int[a.length];
}
// Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p] <= a[q]) {
b[i] = a[p++];
} else {
b[i] = a[q++];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i] = a[i]
);
run[++last] = right;
}
int[] t = a; a = b; b = t;
}
}
/**
* Sorts the specified range of the array by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
* @param leftmost indicates if this part is the leftmost in the range
*/
private static void sort(int[] a, int left, int right, boolean leftmost){}
在JDK7中,排序使用的双轴快速排序,其要比传统的单轴排序要快
- 双轴快速排序:如果数组的长度小于
QUICKSORT_THRESHOLD
的话就会使用这个双轴快速排序,而这个值是286
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
}
1.3、JDK1.8
1.3.1、源码
public static void sort(int[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}
DualPivotQuicksort.sort
方法
private static final int QUICKSORT_THRESHOLD = 286;
static void sort(int[] a, int left, int right,
int[] work, int workBase, int workLen) {
// Use Quicksort on small arrays,QUICKSORT_THRESHOLD为286,当要排序区间小于286时,发现调用了本类的重载sort方法
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
}
/**
* run[i] 意味着第i个有序数列开始的位置,(升序或者降序)
**/
int[] run =new int[MAX_RUN_COUNT + 1];
int count=0; run[0] = left;
// 检查数组是不是已经接近有序状态
for(int k = left; k < right; run[count] = k) {
if(a[k] < a[k + 1]){ // 升序
while(++k <= right && a[k - 1] <= a[k]) ;
} else if(a[k] > a[k + 1]) { // 降序
while(++k <=right && a[k - 1] >= a[k]);
//如果是降序的,找出k之后,把数列倒置
for (int lo = run[count],hi = k;++lo < --hi) {
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // 相等
for(int m = MAX_RUN_LENGTH; ++k <=right && a[k - 1] == a[k];) {
// 数列中有至少MAX_RUN_LENGTH的数据相等的时候,直接使用快排。
// 这里为什么这么处理呢?
if(--m == 0){
sort(a, left, right, true);
return;
}
}
}
/**
* 数组并非高度有序,使用快速排序,因为数组中有序数列的个数超过了MAX_RUN_COUNT
*/
if(++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
}
//检查特殊情况
if(run[count] == right++){ // 最后一个有序数列只有最后一个元素
run[++count] =right; // 那给最后一个元素的后面加一个哨兵
} else if(count == 1) { // 整个数组中只有一个有序数列,说明数组已经有序啦,不需要排序了
return;
}
/**
* 创建合并用的临时数组。
* 注意: 这里变量right被加了1,它在数列最后一个元素位置+1的位置
* 这里没看懂,没发现后面的奇数处理和偶数处理有什么不同
*/
int[] b; byte odd=0;
for(int n=1; (n <<= 1) < count; odd ^=1);
if(odd == 0) {
b=a;a= new int[b.length];
for(int i=left -1; ++i < right; a[i] = b[i]);
} else {
b=new int[a.length];
}
// 合并
// 最外层循环,直到count为1,也就是栈中待合并的序列只有一个的时候,标志合并成功
// a 做原始数组,b 做目标数组
for(int last; count > 1; count = last) {
// 遍历数组,合并相邻的两个升序序列
for(int k = (last = 0) + 2; k <= count; k += 2) {
// 合并run[k-2] 与 run[k-1]两个序列
int hi = run[k], mi = run[k - 1];
for(int i = run[k - 2], p = i,q = mi; i < hi; ++i){
// 这里我给源码加了一个括号,这样好理解一点。 之前总觉得它会出现数组越界问题,
// 后来加了这个括号之后发现是没有问题的
if(q >= hi || (p < mi && a[p] <= a[q])) {
b[i] = a[p++];
} else {
b[i] = a[q++];
}
}
// 这里把合并之后的数列往前移动
run[++last] = hi;
}
// 如果栈的长度为奇数,那么把最后落单的有序数列copy过对面
if((count & 1) != 0) {
for(int i = right, lo =run[count -1]; --i >= lo; b[i] = a[i]);
run[++last] = right;
}
//临时数组,与原始数组对调,保持a做原始数组,b 做目标数组
int[] t = a; a = b; b = t;
}
}
int length = right - left + 1;
// INSERTION_SORT_THRESHOLD为47,发现当要排序的个数小于47个时,采用插入排序,采用了哨兵方法,对于新元素从他前一个一个一个比较
// Use insertion sort on tiny arrays
if (length < INSERTION_SORT_THRESHOLD) {
if (leftmost) {
/*
* Traditional (without sentinel) insertion sort,
* optimized for server VM, is used in case of
* the leftmost part.
*/
for (int i = left, j = i; i < right; j = ++i) {
int ai = a[i + 1];
while (ai < a[j]) {
a[j + 1] = a[j];
if (j-- == left) {
break;
}
}
a[j + 1] = ai;
}
} else {
/**
* 首先跨过开头的升序的部分
*/
do {
if(left > right) {
return;
}
}while(a[++left] >= a[left - 1]);
/**
* 这里用到了成对插入排序方法,它比简单的插入排序算法效率要高一些
* 因为这个分支执行的条件是左边是有元素的
* 所以可以直接从left开始往前查找。
*/
for(int k = left; ++left <= right; k = ++left) {
int a1 = a[k], a2 = a[left];
//保证a1>=a2
if(a1 < a2) {
a2 = a1; a1 = a[left];
}
//先把两个数字中较大的那个移动到合适的位置
while(a1 < a[--k]) {
a[k + 2] = a[k]; //这里每次需要向左移动两个元素
}
a[++k + 1] = a1;
//再把两个数字中较小的那个移动到合适的位置
while(a2 < a[--k]) {
a[k + 1] = a[k]; //这里每次需要向左移动一个元素
}
a[k + 1] = a2;
}
int last = a[right];
while(last < a[--right]) {
a[right + 1] = last;
}
a[right + 1] = last;
}
return;
}
至于大过INSERTION_SORT_THRESHOLD(47)的,用一种快速排序(双轴快排)的方法:
- 从数列中挑出五个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
总结:插入排序,快速排序,归并排序三种排序的组合
1.4、parallelSort
并行排序,JDK1.8增加的新方法
// 并行排序的最小数组长度
private static final int MIN_ARRAY_SORT_GRAN = 1 << 13;
public static void parallelSort(int[] a) {
int n = a.length, p, g;
// 如果数据的长度小于 MIN_ARRAY_SORT_GRAN(1 << 13)
if (n <= MIN_ARRAY_SORT_GRAN ||
// 或者当前并行度级别是 1的话,仍然使用常规的双轴快速排序
(p = ForkJoinPool.getCommonPoolParallelism()) == 1)
DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
else
// 否则使用并行排序
new ArraysParallelSortHelpers.FJInt.Sorter
(null, a, new int[n], 0, n, 0,
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
MIN_ARRAY_SORT_GRAN : g).invoke();
}
2、搜索:binarySearch
主要用于快速从数组中查找对应的值,如果查找到了,返回的是对应数组的下标的值;如果查询不到则返回负数;
二分查找确保数组一定是有序的,否则可能找不到对应的数据
但是该方法有有一个问题:如果一个数组当中有多个元素,其无法保证匹配的到底是哪一个
// a:我们要搜索的数组,fromIndex:从那里开始搜索,默认是0; toIndex:搜索到何时停止,默认是数组大小
// key:我们需要搜索的值
// c:外部比较器
private static <T> int binarySearch0(T[] a, int fromIndex, int toIndex,
T key, Comparator<? super T> c) {
// 如果比较器 c 是空的,直接使用 key 的 Comparable.compareTo 方法进行排序
// 假设 key 类型是 String 类型,String 默认实现了 Comparable 接口,就可以直接使用 compareTo 方法进行排序
if (c == null) {
// 这是另外一个方法,使用内部排序器进行比较的方法
return binarySearch0(a, fromIndex, toIndex, key);
}
int low = fromIndex;
int high = toIndex - 1;
// 开始位置小于结束位置,就会一直循环搜索
while (low <= high) {
// 假设 low =0,high =10,那么 mid 就是 5,所以说二分的意思主要在这里,每次都是计算索引的中间值
int mid = (low + high) >>> 1;
T midVal = a[mid];
// 比较数组中间值和给定的值的大小关系
int cmp = c.compare(midVal, key);
// 如果数组中间值小于给定的值,说明我们要找的值在中间值的右边
if (cmp < 0)
low = mid + 1;
// 我们要找的值在中间值的左边
else if (cmp > 0)
high = mid - 1;
else
// 找到了
return mid; // key found
}
// 返回的值是负数,表示没有找到
return -(low + 1); // key not found.
}
3、数据拷贝:copyOf和copyRange
-
拷贝整个数组:copyOf
public static int[] copyOf(int[] original, int newLength) { int[] copy = new int[newLength]; System.arraycopy(original, 0, copy, 0, Math.min(original.length, newLength)); return copy; }
-
拷贝部分数组:copyOfRange
// original 原始数组数据 // from 拷贝起点 // to 拷贝终点 public static char[] copyOfRange(char[] original, int from, int to) { // 需要拷贝的长度 int newLength = to - from; if (newLength < 0) throw new IllegalArgumentException(from + " > " + to); // 初始化新数组 char[] copy = new char[newLength]; // 调用 native 方法进行拷贝,参数的意思分别是: // 被拷贝的数组、从数组那里开始、目标数组、从目的数组那里开始拷贝、拷贝的长度 System.arraycopy(original, from, copy, 0, Math.min(original.length - from, newLength)); return copy; }
基本上调用的是System.arrayCopy
方法。
另外在在ArrayList的toArray方法中,其调用的也是Arrays里的copyOf方法,因为ArrayList的底层实现是数组;
4、数组填充:fill
5、数组转换为结婚:asList
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
该方法有以下需要注意的:
- 其返回的集合不是
java.util.ArrayList
的实例,而是Array的内部类:java.util.Arrays.ArrayList
; java.util.Arrays.ArrayList
不能对集合进行增、删操作,其没有实现AbstractList
类中的add、remove方法;- 常见使用方法是:
List<T> list = new ArrayList<>(Arrays.asList(T...a));
,可以将其作为参数传到对应集合的构造方法里面;
二、Collections
为方便集合操作而产生的工具类。
Collections也提供sort和binarySearch方法,其sort方法底层调用就是Arrays.sort
方法,而binarySearch底层重写了二分查找算法,实现逻辑和Arrays的二分查找算法一致
1、sort()方法实现
public static <T extends Comparable<? super T>> void sort(List<T> list)
1.1、JDK1.6
1.1.1、源码
// 基本方法
public static <T extends Comparable<? super T>> void sort(List<T> list) {
Object[] a = list.toArray();
Arrays.sort(a);
ListIterator<T> i = list.listIterator();
for (int j=0; j<a.length; j++) {
i.next();
i.set((T)a[j]);
}
}
/**********************下面方法未自Arrays***********************/
// 调用 Arrays.sort(Object[] a) 排序方法,This algorithm offers guaranteed n*log(n) performance.
public static void sort(Object[] a) {
Object[] aux = (Object[])a.clone();
mergeSort(aux, a, 0, a.length, 0);
}
/**
* Tuning parameter: list size at or below which insertion sort will be
* used in preference to mergesort or quicksort.
*/
private static final int INSERTIONSORT_THRESHOLD = 7;
/**
* Src is the source array that starts at index 0
* Dest is the (possibly larger) array destination with a possible offset
* low is the index in dest to start sorting
* high is the end index in dest to end sorting
* off is the offset to generate corresponding low, high in src
*/
private static void mergeSort(Object[] src,
Object[] dest,
int low,
int high,
int off) {
int length = high - low;
// Insertion sort on smallest arrays
if (length < INSERTIONSORT_THRESHOLD) {
for (int i = low; i < high; i++)
for (int j = i; j > low &&
((Comparable) dest[j - 1]).compareTo(dest[j]) > 0; j--)
swap(dest, j, j - 1);
return;
}
// Recursively sort halves of dest into src
int destLow = low;
int destHigh = high;
low += off;
high += off;
int mid = (low + high) >>> 1;
mergeSort(dest, src, low, mid, -off);
mergeSort(dest, src, mid, high, -off);
// If list is already sorted, just copy from src to dest. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (((Comparable) src[mid - 1]).compareTo(src[mid]) <= 0) {
System.arraycopy(src, low, dest, destLow, length);
return;
}
// Merge sorted halves (now in src) into dest
for (int i = destLow, p = low, q = mid; i < destHigh; i++) {
if (q >= high || p < mid && ((Comparable) src[p]).compareTo(src[q]) <= 0)
dest[i] = src[p++];
else
dest[i] = src[q++];
}
}
private static void swap(Object[] x, int a, int b) {
Object t = x[a];
x[a] = x[b];
x[b] = t;
}
1.2、JDK1.7
1.2.1、源码
public static <T extends Comparable<? super T>> void sort(List<T> list) {
Object[] a = list.toArray();
Arrays.sort(a);
ListIterator<T> i = list.listIterator();
for (int j=0; j<a.length; j++) {
i.next();
i.set((T)a[j]);
}
}
//Arrays.sort方法
public static void sort(Object[] a) {
if (LegacyMergeSort.userRequested)
legacyMergeSort(a);
else
ComparableTimSort.sort(a);
}
static final class LegacyMergeSort {
private static final boolean userRequested =
java.security.AccessController.doPrivileged(
new sun.security.action.GetBooleanAction(
"java.util.Arrays.useLegacyMergeSort")).booleanValue();
}
/** To be removed in a future release. */
private static void legacyMergeSort(Object[] a) {
Object[] aux = a.clone();
mergeSort(aux, a, 0, a.length, 0);
}
private static void mergeSort(Object[] src,
Object[] dest,
int low,
int high,
int off) {
int length = high - low;
// Insertion sort on smallest arrays
if (length < INSERTIONSORT_THRESHOLD) {
for (int i=low; i<high; i++)
for (int j=i; j>low &&
((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
swap(dest, j, j-1);
return;
}
// Recursively sort halves of dest into src
int destLow = low;
int destHigh = high;
low += off;
high += off;
int mid = (low + high) >>> 1;
mergeSort(dest, src, low, mid, -off);
mergeSort(dest, src, mid, high, -off);
// If list is already sorted, just copy from src to dest. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {
System.arraycopy(src, low, dest, destLow, length);
return;
}
// Merge sorted halves (now in src) into dest
for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)
dest[i] = src[p++];
else
dest[i] = src[q++];
}
}
/**
* Swaps x[a] with x[b].
*/
private static void swap(Object[] x, int a, int b) {
Object t = x[a];
x[a] = x[b];
x[b] = t;
}
// ComparableTimSort
1.3、JDK1.8
2、集合的最大、最小值
max方法提供了两种实现
// 没有比较器的,那么默认非泛型必须实现了Comparable接口,否则编译的时候会报错,因为其底层是调用Comparable的compareTo方法来进行比较的;
// 泛型必须继承Objec且实现Comparable接口;
public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
Iterator<? extends T> i = coll.iterator();
T candidate = i.next();
while (i.hasNext()) {
T next = i.next();
if (next.compareTo(candidate) > 0)
candidate = next;
}
return candidate;
}
// 带比较器,跟不带比较器的类似;
public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
if (comp==null)
return (T)max((Collection) coll);
Iterator<? extends T> i = coll.iterator();
T candidate = i.next();
while (i.hasNext()) {
T next = i.next();
if (comp.compare(next, candidate) > 0)
candidate = next;
}
return candidate;
}
3、多张类型的集合
Collections对原始集合进行了封装,提供了:线程安全的集合、不可变的集合;
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R1ReBn5L-1580104538820)(集合/image/Collections-InnerClass.png)]
3.1、线程安全的集合
线程安全的集合都是以Synchronized开头
- SynchronizedList
- SynchronizedMap
- SynchronizedSet
- SynchronizedSortedMap
- SynchronizedSortedSet
上述线程安全的集合都是通过synchronized代码块来实现的,虽然都是线程安全的,但是在实际应用中避免使用这些类;
3.2、不可变集合
不可变集合都是Unmodifiable开头,这类方法的操作是会从原集合中得到一个不可变的新集合,新集合只能访问,不能修改;否则抛出异常;
UnmodifiableCollection
:为只读集合
static class UnmodifiableList<E> extends UnmodifiableCollection<E> implements List<E> {
public E set(int index, E element) {
// 抛出异常
throw new UnsupportedOperationException();
}
public void add(int index, E element) {
// 抛出异常
throw new UnsupportedOperationException();
}
public E remove(int index) {
// 抛出异常
throw new UnsupportedOperationException();
}
public int indexOf(Object o) {return list.indexOf(o);}
public int lastIndexOf(Object o) {return list.lastIndexOf(o);}
public boolean addAll(int index, Collection<? extends E> c) {
// 抛出异常
throw new UnsupportedOperationException();
}
@Override
public void replaceAll(UnaryOperator<E> operator) {
// 抛出异常
throw new UnsupportedOperationException();
}
@Override
public void sort(Comparator<? super E> c) {
// 抛出异常
throw new UnsupportedOperationException();
}
}
三、Objects
1、相等
主要有两个方法:deepEquals、equals,其中deepEquals主要是判断数组的,后面equals主要判断基本类型和自定义类型的
public static boolean deepEquals(Object a, Object b) {
if (a == b)
return true;
else if (a == null || b == null)
return false;
else
return Arrays.deepEquals0(a, b);
}
public static boolean equals(Object a, Object b) {
return (a == b) || (a != null && a.equals(b));
}
2、判空
Objects.isNull(Object obj)
Objects.nonNull(Object obj)
Objects.requireNonNull(T obj)
Objects.requireNonNull(T obj, String message)
Objects.requireNonNull(T obj, Supplier<String> messageSupplier)