NumPy Matplotlib结合

import numpy as np
import matplotlib.pyplot as plt  # 导入matplotlib模块,用于图表辅助分析

# 导入模块
# 随机数生成

samples = np.random.normal(size=(4,4))
print(samples)
# 生成一个标准正太分布的4*4样本值
# numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点数组 —— 均匀分布



a = np.random.rand()
print(a,type(a))  # 生成一个随机浮点数

b = np.random.rand(4)
print(b,type(b))  # 生成形状为4的一维数组

c = np.random.rand(2,3)
print(c,type(c))  # 生成形状为2*3的二维数组,注意这里不是((2,3))

samples1 = np.random.rand(1000)
samples2 = np.random.rand(1000)
plt.scatter(samples1,samples2)
# 生成1000个均匀分布的样本值
plt.show()

运行截图:

import numpy as np
import matplotlib.pyplot as plt  # 导入matplotlib模块,用于图表辅助分析

# 导入模块
# 随机数生成

samples = np.random.normal(size=(4,4))
print(samples)
# 生成一个标准正太分布的4*4样本值
# numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点数组 —— 均匀分布



a = np.random.rand()
print(a,type(a))  # 生成一个随机浮点数

b = np.random.rand(4)
print(b,type(b))  # 生成形状为4的一维数组

c = np.random.rand(2,3)
print(c,type(c))  # 生成形状为2*3的二维数组,注意这里不是((2,3))

samples1 = np.random.randn(1000)
samples2 = np.random.randn(1000)
plt.scatter(samples1,samples2)
# randn和rand的参数用法一样
# 生成1000个正太的样本值
plt.show()

posted @ 2020-02-09 22:48  阳神  阅读(134)  评论(0编辑  收藏  举报