两路归并算法
归并排序(Merge Sort)是利用"归并"技术来进行排序。归并是指将若干个已排序的子文件合并成一个有序的文件。
两路归并算法
1、算法基本思路
设两个有序的子文件(相当于输入堆)放在同一向量中相邻的位置上:R[low..m],R[m+1..high],先将它们合并到一个局部的暂存向量R1(相当于输出堆)中,待合并完成后将R1复制回R[low..high]中。
(1)合并过程
合并过程中,设置i,j和p三个指针,其初值分别指向这三个记录区的起始位置。合并时依次比较R[i]和R[j]的关键字,取关键字较小的记录复制到R1[p]中,然后将被复制记录的指针i或j加1,以及指向复制位置的指针p加1。
重复这一过程直至两个输入的子文件有一个已全部复制完毕(不妨称其为空),此时将另一非空的子文件中剩余记录依次复制到R1中即可。
(2)动态申请R1
实现时,R1是动态申请的,因为申请的空间可能很大,故须加入申请空间是否成功的处理。
2、归并算法
void Merge(SeqList R,int low,int m,int high)
{//将两个有序的子文件R[low..m)和R[m+1..high]归并成一个有序的
//子文件R[low..high]
int i=low,j=m+1,p=0; //置初始值
RecType *R1; //R1是局部向量,若p定义为此类型指针速度更快
R1=(ReeType *)malloc((high-low+1)*sizeof(RecType));
if(! R1) //申请空间失败
Error("Insufficient memory available!");
while(i<=m&&j<=high) //两子文件非空时取其小者输出到R1[p]上
R1[p++]=(R[i].key<=R[j].key)?R[i++]:R[j++];
while(i<=m) //若第1个子文件非空,则复制剩余记录到R1中
R1[p++]=R[i++];
while(j<=high) //若第2个子文件非空,则复制剩余记录到R1中
R1[p++]=R[j++];
for(p=0,i=low;i<=high;p++,i++)
R[i]=R1[p];//归并完成后将结果复制回R[low..high]
} //Merge