Lv.的博客

RNN 的不变性

卷积神经网络的不变性
  不变性的实现主要靠两点:大量数据(各种数据);网络结构(pooling)
不变性的类型
  1)平移不变性
  卷积神经网络最初引入局部连接和空间共享,就是为了满足平移不变性。
  关于CNN中的平移不变性的来源有多种假设。
  一个想法是平移不变性是由于连续卷积层中神经元的感受野尺寸增加。另一个可能性是不变性是由于pooling操作。我们开发了一个简单的工具,即平移灵敏度图,我们用它来可视化和量化各种体系结构的平移不变性。我们得到了令人惊讶的结果,诸如池层数和卷积滤波器大小之类的架构选择仅对网络的平移不变性具有次要影响。
  2)旋转和视角不变性
  个人觉得卷积神经网络克服这一不变性的主要手段还是靠大量的数据。并没有明确加入“旋转和视角不变性”的先验特性。Deformable Convolutional Networks似乎是对此变性进行了进行增强。
  3)尺寸不变性
  我们知道filter的size是事先选择的,而不同的尺寸所寻找的形状(概念)范围不同(就是说感受野不同)。可以说Inception是为了尺寸不变性而引入的一个先验知识。
————————————————
版权声明:本文为CSDN博主「whitenightwu」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/wydbyxr/article/details/83651411

posted @   Avatarx  阅读(389)  评论(0编辑  收藏  举报
(评论功能已被禁用)
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
点击右上角即可分享
微信分享提示