BZOJ4553:[HEOI2016/TJOI2016]序列——题解

https://www.lydsy.com/JudgeOnline/problem.php?id=4553

 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他。玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化。现在佳媛姐姐已经研究出了所有变化的可能性,她想请教你,能否选出一个子序列,使得在任意一种变化中,这个子序列都是不降的?请你告诉她这个子序列的最长长度即可。注意:每种变化最多只有一个值发生变化。在样例输入1中,所有的变化是:

1 2 3
2 2 3
1 3 3
1 1 3
1 2 4
选择子序列为原序列,即在任意一种变化中均为不降子序列

一道比较难的题?可能是我CDQ很久没写的缘故了……

设l[i]~r[i]表示i数的变动范围,考虑f[i]=max(f[j])+1,其中j要满足:

j<i

a[j]<=l[i]

r[j]<=a[i]

很显然是CDQ三维(?)偏序的模型,但是有四个变量,所以归并排序貌似不可做……

改一下变量名变成:

tj<ti

xj<=yi

zj<=xi

我们一维排t,二维mid左右两边分别排x和y,然后按照顺序类似归并排序把两边的x和y合在一起,再用树状数组维护第三维就好啦!

当然注意每次我们处理完别忘了要回归原位!

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+5;
const int MAX=1e5;
inline int read(){
    int X=0,w=0;char ch=0;
    while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
    while(isdigit(ch))X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
    return w?-X:X;
}
struct node{
    int x,y,z,t,ans;
}a[N];
int n,m,tr[N];
inline int lowbit(int x){return x&(-x);}
inline void add(int x,int y){
    for(int i=x;i<=MAX;i+=lowbit(i))tr[i]=max(tr[i],y);
}
inline int query(int x){
    int res=0;
    for(int i=x;i;i-=lowbit(i))res=max(res,tr[i]);
    return res;
}
inline void mdy(int x){
    for(int i=x;i<=MAX;i+=lowbit(i))tr[i]=0;
}
inline bool cmpt(node a,node b){
    return a.t<b.t;
}
inline bool cmpx(node a,node b){
    return a.x==b.x?a.t<b.t:a.x<b.x;
}
inline bool cmpy(node a,node b){
    return a.y==b.y?a.t<b.t:a.y<b.y;
}
void cdq(int l,int r){
    if(l>=r)return;
    int mid=(l+r)>>1;
    cdq(l,mid);
    sort(a+l,a+mid+1,cmpx);
    sort(a+mid+1,a+r+1,cmpy);
    for(int i=l,j=l,k=mid+1;i<=r;i++){
    if(j<=mid&&(k>r||a[j].x<=a[k].y))add(a[j].z,a[j].ans),j++;
    else a[k].ans=max(a[k].ans,query(a[k].x)+1),k++;
    }
    for(int i=l;i<=mid;i++)mdy(a[i].z);
    sort(a+mid+1,a+r+1,cmpt);
    cdq(mid+1,r);
}
int main(){
    n=read(),m=read();
    for(int i=1;i<=n;i++)a[i].x=a[i].y=a[i].z=read(),a[i].t=i;
    for(int i=1;i<=m;i++){
    int x=read(),y=read();
    a[x].y=min(a[x].y,y);
    a[x].z=max(a[x].z,y);
    }
    for(int i=1;i<=n;i++)a[i].ans=1;
    cdq(1,n);
    int ans=0;
    for(int i=1;i<=n;i++)ans=max(ans,a[i].ans);
    printf("%d\n",ans);
    return 0;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

posted @ 2018-06-16 09:30  luyouqi233  阅读(184)  评论(0编辑  收藏  举报