BZOJ4872:[SHOI2017]分手是祝愿——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=4872
https://www.luogu.org/problemnew/show/P3750
Zeit und Raum trennen dich und mich.
时空将你我分开。
B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为从 1 到 n 的正整数。
每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏的目标是使所有灯都灭掉。
但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被改变,即从亮变成灭,或者是从灭变成亮。
B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机操作一个开关,直到所有灯都灭掉。
这个策略需要的操作次数很多, B 君想到这样的一个优化。如果当前局面,可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个策略显然小于等于 k 步)操作这些开关。
B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使用操作次数最小的操作方法)的操作次数的期望。
这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定是整数,所以他只需要知道这个整数对 100003 取模之后的结果。
期望dp,首先显然我们可以预处理出所有数的约数。
然后考虑我们的最小策略:显然每个灯都得按,所以从大到小依次按灭就是最小步数。
如果这个步数大于k,设dp[i]表示当前还有i步到达结束状态,使其变成dp[i-1]态的概率(期望步数)。
那么显然按对的概率为i/n,按不对的概率为(n-i)/n,按对只需要1步,按不对需要最开始的1步+dp[i+1]+dp[i]。
所以答案为dp[i]=i/n+(n-i)/n*(1+dp[i+1]+dp[i])。
移项即可。
#include<algorithm> #include<iostream> #include<cstring> #include<cctype> #include<cstdio> #include<vector> #include<cmath> using namespace std; typedef long long ll; const int p=100003; const int N=1e5+5; inline int read(){ int X=0,w=0;char ch=0; while(!isdigit(ch)){w|=ch=='-';ch=getchar();} while(isdigit(ch))X=(X<<3)+(X<<1)+(ch^48),ch=getchar(); return w?-X:X; } ll qpow(ll k,int n){ ll ans=1; while(n){ if(n&1)ans=ans*k%p; k=k*k%p;n>>=1; } return ans; } vector<int>v[N]; ll f[N]; int on[N]; int main(){ int n=read(),k=read(); for(int i=1;i<=n;i++){ on[i]=read(); for(int j=i;j<=n;j+=i) v[j].push_back(i); } ll tim=0,ans=0; for(int i=n;i>=1;i--){ if(on[i]){ for(int j=0;j<v[i].size();j++)on[v[i][j]]^=1; tim++; } } if(tim<=k)ans=tim; else{ ans=k; f[n]=1; for(int i=n-1;i>=1;i--){ f[i]=(n+(n-i)*f[i+1])%p*qpow(i,p-2)%p; } for(int i=tim;i>k;i--)ans=(ans+f[i])%p; } for(int i=1;i<=n;i++)ans=ans*i%p; printf("%lld\n",ans); return 0; }
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++