爬虫与Python:(四)爬虫进阶扩展之Pandas——6.JSON化

JSON(JavaScript Object Notation,JavaScript 对象表示法),是存储和交换文本信息的语法,类似 XML。

Pandas 可以很方便的处理 JSON 数据。

读取JSON数据

假设site.json文件内容如下:

[
   {
   "id": "A001",
   "name": "菜鸟教程",
   "url": "www.runoob.com",
   "likes": 61
   },
   {
   "id": "A002",
   "name": "Google",
   "url": "www.google.com",
   "likes": 124
   },
   {
   "id": "A003",
   "name": "淘宝",
   "url": "www.taobao.com",
   "likes": 45
   }
]

简单的读取JSON内容示例如下:

1 import pandas as pd
2 
3 df = pd.read_json('sites.json')
4 print(df.to_string())   #to_string() 用于返回 DataFrame 类型的数据,我们也可以直接处理 JSON 字符串

以上示例输出结果为:

     id    name             url  likes
0  A001    菜鸟教程  www.runoob.com     61
1  A002  Google  www.google.com    124
2  A003      淘宝  www.taobao.com     45

将Python字典转换为DataFrame

JSON 对象与 Python 字典具有相同的格式,所以我们可以直接将 Python 字典转化为 DataFrame 数据:

 1 import pandas as pd
 2 
 3 # 字典格式的 JSON
 4 s = {
 5     "col1":{"row1":1,"row2":2,"row3":3},
 6     "col2":{"row1":"x","row2":"y","row3":"z"}
 7 }
 8 # 读取 JSON 转为 DataFrame
 9 df = pd.DataFrame(s)
10 print(df)

从URL中读取JSON数据

从URL读取JSON的代码如下:

import pandas as pd

URL = 'https://static.runoob.com/download/sites.json'
df = pd.read_json(URL)
print(df)

内嵌的JSON数据

假设有一组内嵌的 JSON 数据文件 nested_list.json

{
    "school_name": "ABC primary school",
    "class": "Year 1",
    "students": [
    {
        "id": "A001",
        "name": "Tom",
        "math": 60,
        "physics": 66,
        "chemistry": 61
    },
    {
        "id": "A002",
        "name": "James",
        "math": 89,
        "physics": 76,
        "chemistry": 51
    },
    {
        "id": "A003",
        "name": "Jenny",
        "math": 79,
        "physics": 90,
        "chemistry": 78
    }]
}

使用以下代码格式读取完整的内容:

import pandas as pd

df = pd.read_json('nested_list.json')
print(df)

以上示例输出结果为:

          school_name  ...                                           students
0  ABC primary school  ...  {'id': 'A001', 'name': 'Tom', 'math': 60, 'phy...
1  ABC primary school  ...  {'id': 'A002', 'name': 'James', 'math': 89, 'p...
2  ABC primary school  ...  {'id': 'A003', 'name': 'Jenny', 'math': 79, 'p...

这时我们就需要使用到 json_normalize() 方法将内嵌的数据完整的解析出来:

import pandas as pd
import json

# 使用 Python JSON 模块载入数据
with open('nested_list.json','r') as f:
    data = json.loads(f.read())

# 展平数据
df_nested_list = pd.json_normalize(data, record_path =['students'])
print(df_nested_list)

以上示例输出结果为:

     id   name  math  physics  chemistry
0  A001    Tom    60       66         61
1  A002  James    89       76         51
2  A003  Jenny    79       90         78

data = json.loads(f.read()) 使用 Python JSON 模块载入数据。

json_normalize() 使用了参数 record_path 并设置为 ['students'] 用于展开内嵌的 JSON 数据 students

显示结果还没有包含 school_name 和 class 元素,如果需要展示出来可以使用 meta 参数来显示这些元数据:

 1 import pandas as pd
 2 import json
 3 
 4 # 使用 Python JSON 模块载入数据
 5 with open('nested_list.json','r') as f:
 6     data = json.loads(f.read())
 7 
 8 # 展平数据
 9 df_nested_list = pd.json_normalize(
10     data,
11     record_path =['students'],
12     meta=['school_name', 'class']
13 )
14 print(df_nested_list)

 

以上实例输出结果为:

     id   name  math  physics  chemistry         school_name   class
0  A001    Tom    60       66         61  ABC primary school  Year 1
1  A002  James    89       76         51  ABC primary school  Year 1
2  A003  Jenny    79       90         78  ABC primary school  Year 1

接下来,让我们尝试读取更复杂的 JSON 数据,该数据嵌套了列表和字典,数据文件 nested_mix.json 如下

{
    "school_name": "local primary school",
    "class": "Year 1",
    "info": {
      "president": "John Kasich",
      "address": "ABC road, London, UK",
      "contacts": {
        "email": "admin@e.com",
        "tel": "123456789"
      }
    },
    "students": [
    {
        "id": "A001",
        "name": "Tom",
        "math": 60,
        "physics": 66,
        "chemistry": 61
    },
    {
        "id": "A002",
        "name": "James",
        "math": 89,
        "physics": 76,
        "chemistry": 51
    },
    {
        "id": "A003",
        "name": "Jenny",
        "math": 79,
        "physics": 90,
        "chemistry": 78
    }]
}
View Code

nested_mix.json 文件转换为 DataFrame:

import pandas as pd
import json

# 使用 Python JSON 模块载入数据
with open('nested_mix.json', 'r') as f:
    data = json.loads(f.read())

df = pd.json_normalize(
    data,
    record_path=['students'],
    meta=[
        'class',
        ['info', 'president'],
        ['info', 'contacts', 'tel']
    ]
)

print(df)

以上示例输出结果为:

     id   name  math  physics  chemistry   class info.president info.contacts.tel
0  A001    Tom    60       66         61  Year 1    John Kasich         123456789
1  A002  James    89       76         51  Year 1    John Kasich         123456789
2  A003  Jenny    79       90         78  Year 1    John Kasich         123456789

读取内嵌数据中的一组数据

以下是实例文件 nested_deep.json,我们只读取内嵌中的 math 字段:

{
    "school_name": "local primary school",
    "class": "Year 1",
    "students": [
    {
        "id": "A001",
        "name": "Tom",
        "grade": {
            "math": 60,
            "physics": 66,
            "chemistry": 61
        }
 
    },
    {
        "id": "A002",
        "name": "James",
        "grade": {
            "math": 89,
            "physics": 76,
            "chemistry": 51
        }
       
    },
    {
        "id": "A003",
        "name": "Jenny",
        "grade": {
            "math": 79,
            "physics": 90,
            "chemistry": 78
        }
    }]
}
View Code

这里我们需要使用到 glom 模块来处理数据套嵌,glom 模块允许我们使用 . 来访问内嵌对象的属性。

第一次使用我们需要安装 glom:

pip3 install glom

示例代码如下:

1 import pandas as pd
2 from glom import glom
3 
4 df = pd.read_json('nested_deep.json')
5 
6 data = df['students'].apply(lambda row: glom(row, 'grade.math'))
7 print(data)

以上实例输出结果为:

0    60
1    89
2    79
Name: students, dtype: int64

参考网址

posted @ 2021-10-28 15:37  陆陆无为而治者  阅读(211)  评论(0编辑  收藏  举报