爬虫与Python:(四)爬虫进阶扩展之Pandas——6.JSON化
JSON(JavaScript Object Notation,JavaScript 对象表示法),是存储和交换文本信息的语法,类似 XML。
Pandas 可以很方便的处理 JSON 数据。
读取JSON数据
假设site.json文件内容如下:
[ { "id": "A001", "name": "菜鸟教程", "url": "www.runoob.com", "likes": 61 }, { "id": "A002", "name": "Google", "url": "www.google.com", "likes": 124 }, { "id": "A003", "name": "淘宝", "url": "www.taobao.com", "likes": 45 } ]
简单的读取JSON内容示例如下:
1 import pandas as pd 2 3 df = pd.read_json('sites.json') 4 print(df.to_string()) #to_string() 用于返回 DataFrame 类型的数据,我们也可以直接处理 JSON 字符串
以上示例输出结果为:
id name url likes
0 A001 菜鸟教程 www.runoob.com 61
1 A002 Google www.google.com 124
2 A003 淘宝 www.taobao.com 45
将Python字典转换为DataFrame
JSON 对象与 Python 字典具有相同的格式,所以我们可以直接将 Python 字典转化为 DataFrame 数据:
1 import pandas as pd 2 3 # 字典格式的 JSON 4 s = { 5 "col1":{"row1":1,"row2":2,"row3":3}, 6 "col2":{"row1":"x","row2":"y","row3":"z"} 7 } 8 # 读取 JSON 转为 DataFrame 9 df = pd.DataFrame(s) 10 print(df)
从URL中读取JSON数据
从URL读取JSON的代码如下:
import pandas as pd URL = 'https://static.runoob.com/download/sites.json' df = pd.read_json(URL) print(df)
内嵌的JSON数据
假设有一组内嵌的 JSON 数据文件 nested_list.json :
{ "school_name": "ABC primary school", "class": "Year 1", "students": [ { "id": "A001", "name": "Tom", "math": 60, "physics": 66, "chemistry": 61 }, { "id": "A002", "name": "James", "math": 89, "physics": 76, "chemistry": 51 }, { "id": "A003", "name": "Jenny", "math": 79, "physics": 90, "chemistry": 78 }] }
使用以下代码格式读取完整的内容:
import pandas as pd df = pd.read_json('nested_list.json') print(df)
以上示例输出结果为:
school_name ... students 0 ABC primary school ... {'id': 'A001', 'name': 'Tom', 'math': 60, 'phy... 1 ABC primary school ... {'id': 'A002', 'name': 'James', 'math': 89, 'p... 2 ABC primary school ... {'id': 'A003', 'name': 'Jenny', 'math': 79, 'p...
这时我们就需要使用到 json_normalize() 方法将内嵌的数据完整的解析出来:
import pandas as pd import json # 使用 Python JSON 模块载入数据 with open('nested_list.json','r') as f: data = json.loads(f.read()) # 展平数据 df_nested_list = pd.json_normalize(data, record_path =['students']) print(df_nested_list)
以上示例输出结果为:
id name math physics chemistry
0 A001 Tom 60 66 61
1 A002 James 89 76 51
2 A003 Jenny 79 90 78
data = json.loads(f.read()) 使用 Python JSON 模块载入数据。
json_normalize() 使用了参数 record_path 并设置为 ['students'] 用于展开内嵌的 JSON 数据 students。
显示结果还没有包含 school_name 和 class 元素,如果需要展示出来可以使用 meta 参数来显示这些元数据:
1 import pandas as pd 2 import json 3 4 # 使用 Python JSON 模块载入数据 5 with open('nested_list.json','r') as f: 6 data = json.loads(f.read()) 7 8 # 展平数据 9 df_nested_list = pd.json_normalize( 10 data, 11 record_path =['students'], 12 meta=['school_name', 'class'] 13 ) 14 print(df_nested_list)
以上实例输出结果为:
id name math physics chemistry school_name class 0 A001 Tom 60 66 61 ABC primary school Year 1 1 A002 James 89 76 51 ABC primary school Year 1 2 A003 Jenny 79 90 78 ABC primary school Year 1
接下来,让我们尝试读取更复杂的 JSON 数据,该数据嵌套了列表和字典,数据文件 nested_mix.json 如下
{ "school_name": "local primary school", "class": "Year 1", "info": { "president": "John Kasich", "address": "ABC road, London, UK", "contacts": { "email": "admin@e.com", "tel": "123456789" } }, "students": [ { "id": "A001", "name": "Tom", "math": 60, "physics": 66, "chemistry": 61 }, { "id": "A002", "name": "James", "math": 89, "physics": 76, "chemistry": 51 }, { "id": "A003", "name": "Jenny", "math": 79, "physics": 90, "chemistry": 78 }] }
nested_mix.json 文件转换为 DataFrame:
import pandas as pd import json # 使用 Python JSON 模块载入数据 with open('nested_mix.json', 'r') as f: data = json.loads(f.read()) df = pd.json_normalize( data, record_path=['students'], meta=[ 'class', ['info', 'president'], ['info', 'contacts', 'tel'] ] ) print(df)
以上示例输出结果为:
id name math physics chemistry class info.president info.contacts.tel 0 A001 Tom 60 66 61 Year 1 John Kasich 123456789 1 A002 James 89 76 51 Year 1 John Kasich 123456789 2 A003 Jenny 79 90 78 Year 1 John Kasich 123456789
读取内嵌数据中的一组数据
以下是实例文件 nested_deep.json,我们只读取内嵌中的 math 字段:
{ "school_name": "local primary school", "class": "Year 1", "students": [ { "id": "A001", "name": "Tom", "grade": { "math": 60, "physics": 66, "chemistry": 61 } }, { "id": "A002", "name": "James", "grade": { "math": 89, "physics": 76, "chemistry": 51 } }, { "id": "A003", "name": "Jenny", "grade": { "math": 79, "physics": 90, "chemistry": 78 } }] }
这里我们需要使用到 glom 模块来处理数据套嵌,glom 模块允许我们使用 . 来访问内嵌对象的属性。
第一次使用我们需要安装 glom:
pip3 install glom
示例代码如下:
1 import pandas as pd 2 from glom import glom 3 4 df = pd.read_json('nested_deep.json') 5 6 data = df['students'].apply(lambda row: glom(row, 'grade.math')) 7 print(data)
以上实例输出结果为:
0 60
1 89
2 79
Name: students, dtype: int64
参考网址
- pandas JSON :https://www.runoob.com/pandas/pandas-json.html