P2569 [SCOI2010]股票交易
Problem
初始有\(\infty\)元钱,有\(T\)天,每天可以买卖股票,告诉你第\(i\)天股票买入价\(AP_i\),股票卖出价\(BP_i\)(保证\(AP_i \ge BP_i\)),至多买\(AS_i\)股,至多卖出\(BS_i\)股。股票交易至少要间隔\(W\)天,每天一个人手里的股票数不得超过\(MaxP\)。求\(T\)天后最大赚钱数。
\(1 \le BP_i \le AP_i \le 1000,1 \le AS_i,BS_i \le MaxP,0 \le W < T \le 50,1 \le MaxP \le 50\)。
Solution
不难想到设\(dp[i][j]\)为到第\(i\)天手上有\(j\)股股票时的最大赚钱数。接下来分类讨论:
- 前面啥也不干,第\(i\)天突然买入\(j\)股股票:\(dp[i][j] = -AP[i] \cdot j\)。
- 第\(i\)天啥也不干:\(dp[i][j] = dp[i - 1][j]\)
- 第\(i\)天买入:
\[dp[i][j] = \max_{j - AS_i \le k \le j - 1} \{dp[i - W - 1][k] - AP_i \cdot (j - k) \} = \max_{j - AS_i \le k \le j - 1} \{dp[i - W - 1][k] + AP_i \cdot k\} - AP_i \cdot j
\]
- 第\(i\)天卖出:
\[dp[i][j] = \max_{j + 1 \le k \le BS_i + j} \{dp[i - W - 1][k] + BP_i \cdot (k - j)\} = \max_{j + 1 \le k \le BS_i + j} \{dp[i - W - 1][k] + BP_i \cdot k\} - BP_i \cdot j
\]
两个东西分别维护单调队列跑一遍,注意卖出的情况得从后往前扫。
# include <bits/stdc++.h>
using namespace std;
const int N = 2005;
int T,MaxP,W,AP[N],BP[N],AS[N],BS[N];
int dp[N][N];
int q[N << 2],head = 1,tail = 0;
int main(void)
{
scanf("%d%d%d",&T,&MaxP,&W);
for(int i = 1; i <= T; i++)
{
scanf("%d%d%d%d",&AP[i],&BP[i],&AS[i],&BS[i]);
}
memset(dp,0xcf,sizeof(dp));
// for(int i = 1; i <= T; i++) dp[i][0] = 0;
for(int i = 1; i <= T; i++)
{
for(int j = 0; j <= AS[i]; j++) dp[i][j] = -AP[i] * j;
for(int j = 0; j <= MaxP; j++) dp[i][j] = max(dp[i][j],dp[i - 1][j]);
if(i - W - 1 >= 0)
{
head = 1,tail = 0;
for(int j = 0; j <= MaxP; j++)
{
while(head <= tail && q[head] < j - AS[i]) ++head;
while(head <= tail && dp[i - W - 1][j] + AP[i] * j >= dp[i - W - 1][q[tail]] + AP[i] * q[tail]) -- tail;
q[++tail] = j;
if(head <= tail) dp[i][j] = max(dp[i][j],dp[i - W - 1][q[head]] + AP[i] * q[head] - AP[i] * j);
}
head = 1,tail = 0;
for(int j = MaxP; j >= 0; j--)
{
while(head <= tail && q[head] > BS[i] + j) ++head;
while(head <= tail && dp[i - W - 1][j] + BP[i] * j >= dp[i - W - 1][q[tail]] + BP[i] * q[tail]) --tail;
q[++tail] = j;
if(head <= tail) dp[i][j] = max(dp[i][j],dp[i - W - 1][q[head]] + BP[i] * q[head] - BP[i] * j);
}
}
}
int ans = 0;
for(int i = 0; i <= MaxP; i++) ans = max(ans,dp[T][i]);
printf("%d\n",ans);
return 0;
}
\[\]