P3131 [USACO16JAN]Subsequences Summing to Sevens S
Problem
给一个长度为\(n\)的序列,求最长连续子序列,满足子序列和是7的倍数。\(n \le 50000\)。
Solution
不难发现先将每个\(a_i \bmod 7\),随后前缀和,令\(q_i = \sum_{j = 1}^i a_j\)。再将\(q_i \bmod 7\)。题目转变为求一个二元组\((i,j)\),使得\(q_j - q{i - 1}\)是0且\(j - i + 1\)最大。
不难发现可以用桶做,把\(q_i \bmod 7\)作为下标,存最大和最小。
# include <bits/stdc++.h>
using namespace std;
const int N = 50005;
int a[N],q[N],n;
int Max[8],Min[8];
int main(void)
{
scanf("%d",&n);
memset(Min,0x3f,sizeof(Min));
memset(Max,0xcf,sizeof(Max));
for(int i = 1; i <= n; i++)
{
scanf("%d",&a[i]);a[i] %= 7;
q[i] = q[i - 1] + a[i];
}
for(int i = 1; i <= n; i++)
{
q[i] %= 7;
Max[q[i]] = max(Max[q[i]],i);
Min[q[i]] = min(Min[q[i]],i);
}
int ans = 0;
for(int i = 0; i < 7; i++) ans = max(ans,Max[i] - Min[i]);
printf("%d\n",ans);
return 0;
}