原子核结构壳模型:粒子空穴转换

1. 准自旋( quasi-spin )的SU(2)代数

对于每个单 \(j\) 壳,定义两个算符\(S_+, S_-\)

\[S_+(j)=\sum_{m>0}(-1)^{j-m}a^+_ma^+_{-m},S_-(j)=\sum_{m>0}(-1)^{j-m}a_{-m}a_m, \]

其中 \(a_m\)\(a_{jm}\)的缩写,因为这里的讨论都局限于一个单 \(j\) 壳内,所以这样简略表达。
\(S_\pm\)是 S 对产生算符和湮灭算符。通过费米子产生湮灭算符的反对易子,可以推导 \(S_\pm\) 的对易子:

\[[S_-,S_+]=\Omega_j - \hat{N}_j, \]

其中\(\hat{N}_j\)\(j\) 壳上的粒子数算符,\(\Omega_j = (2j+1)/2\)
另外有

\[[S_\pm, \hat{N}_j] = \mp 2, \]

( 因为对产生湮灭算符会增加减少粒子数 2 )。
定义

\[S_z= \frac{1}{2}(N_j-\Omega_j) \]

会得到

\[[S_\pm, S_z] = \pm 1, [S_-, S_+] = -2S_z, \]

所以可以定义

\[S_x = \frac{1}{2}( S_+ + S_-), S_y = \frac{1}{2i}(S_+ - S_-), \]

由于\(S_+, S_-\)互为共轭,所以\(S_x, S_y\)都是厄米算符,\(S_z\)显然也是厄米算符。利用上面的对易子,很容易得到

\[[S_\alpha, S_\beta] = i \epsilon_{\alpha \beta \gamma} S_\gamma, \]

即 SU(2) 代数,与自旋算符的代数一样,所以叫做准自旋。显然,\(S_z\) 与粒子数相关,如果波函数是S对condensate,那么\(S_z\)量子数就是”超过一半容量的对数“。

\[S^2 = S_+ S_- - S_z + S^2_z, \]

在给定粒子数的情况下,是一个衡量波函数中有多少配成\(S\)对的算符。

2. 粒子空穴共轭算符:\(\Gamma = e^{i\pi S_y}\)

2.1 \(\Gamma\)是幺正算符

因为 \(S_y\) 是一个厄米算符,所以\(\Gamma^\dagger = e^{-i\pi S_y}\), 所以有

\[\Gamma \Gamma^\dagger = \Gamma^\dagger \Gamma = 1. \]

2.2 \(\Gamma \tilde{a}_m \Gamma^\dagger = - a^\dagger_{m}, \Gamma a^\dagger_m \Gamma^\dagger = \tilde{a}_m\)

约定 \(\tilde{a}_m = (-1)^{j+m}a_{-m}\)。对于任意算符\(S, Q\),定义

\[f(x) = e^{xS} Q e^{-xS}, \nonumber \]

则有偏导数

\[\frac{ d f}{ d x} = [S, f(x)], ~~~~~ \frac{ d^2 f}{ d x^2} = [S,[S,f(x)]], ~~~~~ \frac{ d^n f }{ d x^n } = [S, [S, \cdots[S,f(x)]\cdots]]. \]

现在取 \(x = i\pi, Q = \tilde{a}_m\),由泰勒展开式,得到

\[\Gamma \tilde{a}_m \Gamma^\dagger = \tilde{a}_m + i \pi [S_y, \tilde{a}_m] + \frac{(i\pi)^2}{2!} [S_y,[S_y,\tilde{a}_m]]+\cdots. \nonumber \]

由费米子产生湮灭算符的反对易子,可以推导得到

\[[S_-, a^\dagger_m] = - \tilde{a}_m, ~~ [S_-, \tilde{a}_m]=0, ~~ [S_+, a^\dagger_m]=0, ~~ [S_+, \tilde{a}_m] = - a^\dagger_m, \]

所以有

\[[S_y, \tilde{a}_m] = \frac{i}{2} a^\dagger_m, ~~~~ [S_y, a^\dagger_m] = - \frac{i}{2} \tilde{a}_m. \]

代入\(\Gamma \tilde{a}_m \Gamma^\dagger\)得到

\[ \Gamma \tilde{a}_m \Gamma^\dagger = \tilde{a}_m ( 1 + (i\pi/2)^2/2! + (i\pi/2)^4/4! + \cdots ) + i a^\dagger_m ( i\pi/2 + (i\pi/2)^3/3! + (i\pi/2)^5/5! + \cdots ) ~~~~~~~~ = \tilde{a}_m \cos \frac{\pi}{2} - a^\dagger_m \sin \frac{\pi}{2} = - a^\dagger_m. \]

类似地,还能得到

\[\Gamma a^\dagger_m \Gamma^\dagger = \tilde{a}_m. \]

进一步

\[\Gamma S_+ \Gamma^\dagger = - S_-, ~~~ \Gamma S_- \Gamma^\dagger = - S_+. \]

2.3 \(\Gamma |0\rangle = \frac{1}{\Omega!}S^\Omega_+ |0 \rangle, \Omega = (2j+1)/2\)

显然,\(\frac{1}{\Omega!}S^\Omega_+ |0 \rangle\)表示占满整个 \(j\) 壳的状态。
\(n/2 \leq \Omega\) 时,利用\(S_\pm\)的对易子,可以推导出

\[\langle 0 | S^{n/2}_- S^{n/2}_+ | 0 \rangle = \frac{ n!! }{ 2^n } \frac{ (2j+1)!! }{ (2j+1-n)!! } = \frac{ (n/2)! \Omega! }{ (\Omega-n/2)! }, \]

所以立即得到

\[\langle 0 | S^\Omega_- S^\Omega_+ | 0 \rangle = (\Omega ! )^2 \]

所以,\(\frac{1}{\Omega!}S^\Omega_+ |0 \rangle\) 是归一化的,是归一化的满占据波函数。下面证明\(\Gamma |0\rangle = \frac{1}{\Omega!}S^\Omega_+ |0 \rangle\)
首先,如果定义

\[S_+(m) = (-1)^{j-m} a^\dagger_m a^\dagger_{-m}, ~~~ S_-(m) = (-1)^{j-m} a_{-m} a_m,~~~ S_z(m) = \frac{1}{2}( \hat{N}_{m,-m} - 1 ) \]

也可以在 \((j,m), (j,-m)\) 这两个轨道上定义一个迷你的准自旋 SU(2) 代数。
那么,\(\Gamma = e^{i\pi S_y} = e^{i\pi \sum S_y(m) } = \prod \Gamma_m\)

\[\Gamma_m | 0 \rangle = e^{\frac{\pi}{2} [S_+(m) - S_-(m) ]} | 0 \rangle = \sum_k \frac{ (\pi/2)^k }{ k! } [S_+(m) - S_-(m) ]^k | 0 \rangle. \]

容易看出

\[(S_+(m) - S_-(m))^2 |0 \rangle = - S_-(m) S_+(m) | 0 \rangle = - | 0 \rangle, \]

所以,计算得到 \(\Gamma_m | 0 \rangle = S_+(m) | 0 \rangle\)

\[\Gamma | 0 \rangle = \prod_m \Gamma_m | 0 \rangle = \prod_m S_+(m) | 0 \rangle = \frac{1}{\Omega!} S^\Omega_+ | 0 \rangle. \]

最后一个等号是因为 \(S^\Omega_+ | 0 \rangle\) 会产生 \(\Omega!\)\(\prod_m S_+(m)|0\rangle\)

2.4 \(\Gamma \Psi_{IM\nu} (j^n)\)正比于\(\Psi_{IM\nu}\)的对偶空穴态

如果把\(\Psi_{IM\nu}(j^n)\)中的所有粒子都拿走,所有没被占据的轨道都填上,会得到一个角动量为\((I,-M)\)\(2\Omega-n\)粒子波函数,咱们暂且把这个波函数叫做\(\Psi_{IM\nu}\)的对偶空穴态。
这里假设了seniority是好量子数,即\(\Psi_{IM\nu}\)可以表示为

\[\Psi_{IM\nu}(j^n) = (\frac{(\Omega -q -\nu)!}{q!(\Omega -\nu)!})^{1/2} \phi_{IM}(j^\nu)S^q_+ |0>, \]

即一部分是归一化之后的 seniority 为 0 的\((\frac{(\Omega -q -\nu)!}{q!(\Omega -\nu)!})^{1/2} S^q_+ |0>\),另一部分是

\[\phi_{IM}(j^\nu) = \sum_k \alpha_{Ik} \phi_M(k), \phi_M(k) = a^\dagger_{m_1 } \cdots a^\dagger_{m_\nu} | 0 \rangle, \]

那么,

\[\Gamma \Psi_{IM\nu} (j^n) = \Gamma \phi_{IM}(j^\nu) \Gamma^\dagger \Gamma (\frac{(\Omega -q -\nu)!}{q!(\Omega -\nu)!})^{1/2} S^q_+ \Gamma^\dagger \frac{1}{\Omega!} S^\Omega_+ | 0 \rangle, \]

最后一行使用了 \(\Gamma | 0 \rangle = \frac{1}{\Omega!} S^\Omega_+ | 0 \rangle\).
利用 \(\Gamma S_+ \Gamma^\dagger = - S_-\)\(S_\pm\)的对易子,以及 \(\Gamma a^\dagger_m \Gamma^\dagger = \tilde{a}_m\),得到

\[\Gamma \Psi_{IM\nu} (j^n) = (-1)^q (\frac{q!}{(\Omega-q-\nu)!(\Omega-\nu)!})^{1/2} \tilde{\phi}_{IM} S_+^{\Omega-q-\nu}. |0> \]

\(\phi_{IM}\)占据了 \(\nu\)\((j,\pm m)\) 轨道对中的一半,如果这一半空出,而另一半占据则正比于\(\tilde{\phi}_{IM}\)
除了这些对偶轨道之外的轨道能容纳 \(\Omega - \nu\) 个对,\(\Phi_{IM\nu}\)占据了\(q\)个,剩下\(\Omega-\nu-q\)个”对轨道“,若这些被占据则构成\((\frac{q!}{(\Omega-q-\nu)!(\Omega-\nu)!})^{1/2} S_+^{\Omega-q-\nu} |0\rangle\)。 
所以,\(\Gamma \Psi_{IM\nu}\)正比于\(\Phi_{IM\nu}\)的对偶空穴态。

2.5 粒子空穴变换

所以,任何矩阵元的计算,都可以插进几个\(\Gamma^\dagger \Gamma\),进行粒子空穴转换:

\[\langle \Phi | \hat{H} | \Psi \rangle = \langle \Phi \Gamma^\dagger \Gamma \hat{H} \Gamma^\dagger \Gamma \Phi \rangle. \]

如果空穴数少于粒子数,就把哈密顿量做个粒子空穴变换\(\hat{H} \rightarrow \Gamma \hat{H} \Gamma^\dagger\),以 \(\Gamma | \Phi \rangle\) 为基矢做计算。
注意,如果 \(\Phi\) 没有好的 seniority,\(\Gamma | \Phi \rangle\)并不是严格的 \(\Phi\) 的空穴对偶态,而是各个不同seniority组分的空穴对偶态乘以一个相因子以后的叠加。具体相因子与相应组分中的 \(S\) 对个数、角动量和第3角动量有关,即上面公式中的 \((-1)^q (-1)^{I +M}\)

3. 壳模型相互作用的粒子空穴转换

3.1 壳模型 1+2body 相互作用形式

在pn格式下(与之相对的是isospin格式),壳模型1+2body哈密顿量为

\[H = H_{pp} + H_{nn} + H_{pn}, \]

三个部分分别是质子、中子、质子-中子三个部分。

\[H_{pp} = \sum_{a \in \pi} \epsilon_a \sum_{m_a} \hat{c}^\dagger_{ j_a, m_a } \hat{c}_{j_a, m_a} + \sum\limits_{abcd \in \pi} \frac{ \sqrt{ (1+\delta_{ab})(1+\delta_{cd}) } }{4} \sum_I V_{pp}(abcd;I) \sum_M \hat{A}^\dagger_{IM}(ab) \hat{A}_{IM}(cd), \]

其中\(\hat{A}^\dagger_{IM}(ab) = ( a^\dagger \otimes b^\dagger )_{IM}\),是不可约张量算符。
中子部分格式与质子部分是相似的,

\[H_{nn} = \sum_{a \in \nu} \epsilon_a \sum_{m_a} \hat{c}^\dagger_{ j_a, m_a } \hat{c}_{j_a, m_a} + \sum\limits_{abcd \in \nu} \frac{ \sqrt{ (1+\delta_{ab})(1+\delta_{cd}) } }{4} \sum_I V_{nn}(abcd;I) \sum_M \hat{A}^\dagger_{IM}(ab) \hat{A}_{IM}(cd), \]

质子-中子部分略有不同

\[H_{pn} = \sum\limits_{a,c\in \pi; b,d \in \nu; I} V_{pn}(abcd;I) \sum_M \hat{A}^\dagger_{IM}(ab) \hat{A}_{IM}(cd). \]

3.2 \(H_{pp} \Rightarrow \Gamma H_{pp} \Gamma^\dagger\)

3.2.1 单体项

单体项很简单,因为

\[\Gamma \hat{c}^\dagger_{j_a, m_a} \hat{c}_{j_a, m_a} \Gamma^\dagger = \hat{c}_{j_a, -m_a} \hat{c}^\dagger_{j_a, -m_a} = 1 - \hat{c}^\dagger_{j_a, -m_a} \hat{c}_{j_a, -m_a} , \]

所以有

\[\Gamma \sum_{a \in \pi} \epsilon_a \sum_{m_a} \hat{c}^\dagger_{ j_a, m_a } \hat{c}_{j_a, m_a} \Gamma^\dagger = \sum_{a \in \pi} \epsilon_a (2j_a+1) - \sum_{a\in\pi} \epsilon_a \sum_{m_a} \hat{c}^\dagger_{ j_a, m_a } \hat{c}_{j_a, m_a}, \]

即满占据的总单粒子能减去空穴的“单粒子能”,空穴的单粒子能是粒子的单粒子能的负数。

3.2.2 两体项

利用前面推导的\(\Gamma\)算符的性质,得到,

\[\Gamma \sum_M \hat{A}^\dagger_{IM}(ab) \hat{A}_{IM}(cd) \Gamma^\dagger = - \sum_M \sum_{\alpha \beta \gamma \delta} C^{IM}_{a \alpha, b \beta} C^{IM}_{c \gamma, d \delta} a_\alpha b_\beta c^\dagger_\gamma d^+_\delta, \]

利用 Wick 定理,即任意算子都可以表示成一系列正则排序的算子之和,

\[abc^\dagger d ^\dagger = \delta_{bc} \delta_{ad} - \delta_{ac} \delta_{bd} - \delta_{bc} d^\dagger a^\dagger + \delta_{ac} d^\dagger b + \delta_{bd} c^\dagger a - \delta_{ad} c^\dagger b + c^\dagger d^\dagger a b, \]

经过亿点繁琐的计算,得到

\[\Gamma H_{pp} \Gamma^\dagger = \sum_{ab\in \pi, I} \frac{ 1+\delta_{ab}}{2} (2I+1) V_{pp}(abab;I) - \sum_{ad\in\pi} \delta_{j_a j_d} ( \sum_{b\in\pi, I} \sqrt{(1+\delta_{ab})(1+\delta_{bd})} ) \frac{2I+1}{2j_a+1} V(abdb;I) ) \sum_\alpha d^\dagger_\alpha a_\alpha + \sum\limits_{abcd \in \pi} \frac{ \sqrt{ (1+\delta_{ab})(1+\delta_{cd}) } }{4} \sum_I V_{pp}(abcd;I) \sum_M \hat{A}^\dagger_{IM}(ab) \hat{A}_{IM}(cd), \]

3.3 \(H_{nn} \Rightarrow \Gamma H_{nn} \Gamma^\dagger\)

\(\Gamma H_{nn} \Gamma^\dagger\)也是完全类似的,把上面的公式中的轨道全部换成中子轨道即可。

3.4 \(H_{pn} \Rightarrow \Gamma H_{pn} \Gamma^\dagger\)

3.4.1 质子、中子都做粒子空穴转换

经过相似的一点推导,得到

\[\Gamma H_{pn} \Gamma^\dagger = \sum_{a\in\pi, b\in\nu, I} (2I+1) V_{pn}(abab;I) - \sum_{a\in\pi, bd\in\nu, I} V_{pn}(abad;I) \frac{2I+1}{2j_b+1}\delta_{j_bj_d} \sum_\beta d^\dagger_\beta b_\beta - \sum_{ac\in\pi, b\in\nu, I} V_{pn}(abcb;I) \frac{2I+1}{2j_a+1}\delta_{j_aj_c} \sum_\alpha c^\dagger_\alpha a_\alpha + \sum_{ac\in\pi, bd\in\nu, I} V_{pn}(abcd;I) \sum_M \hat{A}^\dagger_{IM}(cd) \hat{A}_{IM}(ab). \]

所以变换以后的两体部分不变,多了常数项、质子单体项、中子单体项。

3.4.2 只有中子做粒子空穴转换

\[\Gamma_n H_{pn} \Gamma^\dagger_n = \sum_{ac \in \pi, b \in \nu, I} \delta_{j_a j_c} V_{pn}(abcb;I) (2I+1)/(2j_a+1) \sum_\alpha a^\dagger_\alpha c_\alpha - \sum_{ac \in \pi, bd \in \nu, L} \sum_I (2I+1) V_{pn}(abcd;I) \left\{ \begin{array}{ccc} a & b & I \\ c & d & L \end{array} \right\} \sum_M A^\dagger_{LM} (ad) A_{LM} (cb) \]

3.4.3 只有质子做粒子空穴转换

\[\Gamma_p H_{pn} \Gamma^\dagger_p = \sum_{a \in \pi, bd \in \nu, I} \delta_{j_b j_d} V_{pn}(abad;I) (2I+1)/(2j_b+1) \sum_\beta b^\dagger_\beta d_\beta - \sum_{ac \in \pi, bd \in \nu, L} \sum_I (2I+1) V_{pn}(abcd;I) \left\{ \begin{array}{ccc} a & b & I \\ c & d & L \end{array} \right\} \sum_M A^\dagger_{LM} (cb) A_{LM} (ad) \]

4.计算验证

我用 jun45 相互作用(使用 scaling),分别用 PandaWarrior 和 Bigstick 进行计算:1) \(p2n2\) 2) \(p \bar{2} n \bar{2}\) 3) \(p2n\bar{2}\) 4) \(p\bar{2}n2\) 四种情况,其中 \(p2\) 表示 \(2\) 质子,\(p\bar{2}\) 表示 2 质子空穴。

4.1 \(p2n2\)\(^{60}_{30}Zn\)

前20个能谱如下,PandaWarrior 和 Bigstick 的结果完全一样(虽然PandaWarrior没有isospin)。

BigStick States:
  State      E        Ex         J       T 
    1    -50.42585   0.00000     0.000  -0.000
    2    -49.43000   0.99585     2.000  -0.000
    3    -47.78510   2.64075     4.000   0.000
    4    -46.30908   4.11676     2.000  -0.000
    5    -46.24605   4.17980     0.000   0.000
    6    -45.97339   4.45246     2.000  -0.000
    7    -45.85816   4.56769     6.000   0.000
    8    -45.69710   4.72875     1.000  -0.000
    9    -45.25258   5.17327     4.000  -0.000
   10    -45.22663   5.19922     3.000  -0.000
   11    -45.00065   5.42520     1.000  -0.000
   12    -44.98837   5.43748     2.000   1.000
   13    -44.80961   5.61624     2.000  -0.000
   14    -44.70301   5.72284     3.000   0.000
   15    -44.61498   5.81087     2.000   1.000
   16    -44.56598   5.85987     3.000   0.000
   17    -44.56188   5.86397     0.000  -0.000
   18    -44.51231   5.91354     1.000   1.000
   19    -44.47028   5.95556     2.000   0.000
   20    -44.43870   5.98715     1.000   1.000
   
PandaWarrior States:
States   E       Ex      J pi    ?th
1    -50.4258    0        0+  1th
2    -49.43    0.99585        2+  1th
3    -47.7851    2.64075        4+  1th
4    -46.3091    4.11677        2+  2th
5    -46.246    4.17981        0+  2th
6    -45.9734    4.45246        2+  3th
7    -45.8582    4.56769        6+  1th
8    -45.6971    4.72875        1+  1th
9    -45.2526    5.17327        4+  2th
10    -45.2266    5.19922        3+  1th
11    -45.0006    5.4252        1+  2th
12    -44.9884    5.43748        2+  4th
13    -44.8096    5.61624        2+  5th
14    -44.703    5.72284        3+  2th
15    -44.615    5.81087        2+  6th
16    -44.566    5.85987        3-  1th
17    -44.5619    5.86397        0+  3th
18    -44.5123    5.91354        1+  3th
19    -44.4703    5.95557        2+  7th
20    -44.4387    5.98715        1+  4th

4.2 \(p20n20\)\(^{96}_{48}Cd\)

BigStick states:
  State      E        Ex         J       T 
    1   -528.99745   0.00000    -0.000   0.000
    2   -528.09635   0.90111     2.000   0.000
    3   -527.01004   1.98741     4.000   0.000
    4   -526.96621   2.03125    -0.000   0.000
    5   -526.33770   2.65975     2.000   0.000
    6   -526.31427   2.68319     5.000   0.000
    7   -526.06750   2.92996     3.000   0.000
    8   -525.97606   3.02140     6.000   0.000
    9   -525.51433   3.48312     8.000   0.000
   10   -525.33979   3.65767     4.000   0.000
   11   -524.98870   4.00875     4.000   0.000
   12   -524.96354   4.03391     8.000   1.000
   13   -524.85037   4.14709     2.000   1.000
   14   -524.75086   4.24659     6.000   0.000
   15   -524.71605   4.28141     8.000   0.000
   16   -524.64199   4.35546     5.000   0.000
   17   -524.61983   4.37762     6.000   0.000
   18   -524.61334   4.38412     2.000   0.000
   19   -524.58394   4.41351     1.000   1.000
   20   -524.53035   4.46711     4.000   0.000

PandaWarrior States:
States   E       Ex      J pi    ?th
1    -528.998    0        0+  1th
2    -528.096    0.901055        2+  1th
3    -527.01    1.98744        4+  1th
4    -526.966    2.03116        0+  2th
5    -526.338    2.65966        2+  2th
6    -526.314    2.68317        5-  1th
7    -526.068    2.92988        3-  1th
8    -525.976    3.02133        6+  1th
9    -525.514    3.4831        8+  1th
10    -525.34    3.65767        4-  1th
11    -524.989    4.0087        4-  2th
12    -524.964    4.03392        8+  2th
13    -524.85    4.14708        2+  3th
14    -524.751    4.24655        6-  1th
15    -524.716    4.2814        8+  3th
16    -524.642    4.35541        5-  2th
17    -524.62    4.3776        6+  2th
18    -524.613    4.38411        2+  4th
19    -524.584    4.4135        1+  1th
20    -524.53    4.46708        4+  2th

4.3 \(p2n20\)\(^{78}_{30}Zn\)

BigStick States:
  State      E        Ex         J       T 
    1   -198.39336   0.00000     0.000   9.000
    2   -197.34820   1.04516     2.000   9.000
    3   -196.60879   1.78457     4.000   9.000
    4   -196.51383   1.87952     2.000   9.000
    5   -195.98205   2.41131     4.000   9.000
    6   -195.90511   2.48824     0.000   9.000
    7   -195.70748   2.68587     3.000   9.000
    8   -195.67498   2.71837     2.000   9.000
    9   -195.65626   2.73710     5.000   9.000
   10   -195.52211   2.87124     6.000   9.000
   11   -195.48953   2.90383     0.000   9.000
   12   -195.48833   2.90502     2.000   9.000
   13   -195.46283   2.93052     1.000   9.000
   14   -195.45651   2.93684     4.000   9.000
   15   -195.43577   2.95759     1.000   9.000
   16   -195.43262   2.96074     8.000   9.000
   17   -195.40300   2.99036     4.000   9.000
   18   -195.25651   3.13685     3.000   9.000
   19   -195.14086   3.25249     6.000   9.000
   20   -195.00435   3.38901     2.000   9.000

PandaWarrior States:
States   E       Ex      J pi    ?th
1    -198.393    0        0+  1th
2    -197.348    1.04516        2+  1th
3    -196.609    1.78457        4+  1th
4    -196.514    1.87952        2+  2th
5    -195.982    2.41131        4+  2th
6    -195.905    2.48821        0+  2th
7    -195.707    2.68587        3+  1th
8    -195.675    2.71837        2+  3th
9    -195.656    2.73707        5-  1th
10    -195.522    2.87124        6+  1th
11    -195.49    2.90381        0+  3th
12    -195.488    2.90503        2+  4th
13    -195.463    2.93053        1+  1th
14    -195.456    2.93684        4+  3th
15    -195.436    2.95758        1+  2th
16    -195.433    2.96073        8+  1th
17    -195.403    2.99034        4-  1th
18    -195.256    3.13684        3+  2th
19    -195.141    3.25249        6+  2th
20    -195.004    3.389        2+  5th

4.4 \(p20n2\)\(^{78}_{48}Cd\)

结果应该与 \(^{78}_{30}Zn\) 相同。

BigStick States:
  State      E        Ex         J       T 
    1   -198.39335   0.00000     0.000   9.000
    2   -197.34820   1.04515     2.000   9.000
    3   -196.60878   1.78457     4.000   9.000
    4   -196.51381   1.87954     2.000   9.000
    5   -195.98205   2.41131     4.000   9.000
    6   -195.90512   2.48824     0.000   9.000
    7   -195.70748   2.68588     3.000   9.000
    8   -195.67498   2.71837     2.000   9.000
    9   -195.65626   2.73709     5.000   9.000
   10   -195.52212   2.87124     6.000   9.000
   11   -195.48953   2.90382     0.000   9.000
   12   -195.48833   2.90503     2.000   9.000
   13   -195.46283   2.93052     1.000   9.000
   14   -195.45651   2.93684     4.000   9.000
   15   -195.43576   2.95759     1.000   9.000
   16   -195.43261   2.96074     8.000   9.000
   17   -195.40298   2.99037     4.000   9.000
   18   -195.25651   3.13684     3.000   9.000
   19   -195.14086   3.25250     6.000   9.000
   20   -195.00434   3.38901     2.000   9.000

PandaWarrior States:
States   E       Ex      J pi    ?th
1    -198.393    0        0+  1th
2    -197.348    1.04516        2+  1th
3    -196.609    1.78457        4+  1th
4    -196.514    1.87952        2+  2th
5    -195.982    2.41131        4+  2th
6    -195.905    2.48821        0+  2th
7    -195.707    2.68587        3+  1th
8    -195.675    2.71837        2+  3th
9    -195.656    2.73707        5-  1th
10    -195.522    2.87124        6+  1th
11    -195.49    2.90381        0+  3th
12    -195.488    2.90503        2+  4th
13    -195.463    2.93053        1+  1th
14    -195.456    2.93684        4+  3th
15    -195.436    2.95758        1+  2th
16    -195.433    2.96073        8+  1th
17    -195.403    2.99034        4-  1th
18    -195.256    3.13684        3+  2th
19    -195.141    3.25249        6+  2th
20    -195.004    3.389        2+  5th

所以,PandaWarrior 内部的处理代码给出了正确的结果。
PVPC/src/class.cpp 中的 xpn_int::Pandya 中有一个bug, Ln2588
mononew[i][i] += nspe[i];//(mono)[i][i];
应改为
mononew[i][i] += nspe[ i - jspace.nj_p ];//(mono)[i][i];
更正以后,用 PVPC 做 Pandya,然后用 PandaWarrior 重复了上面四种情况的检验,验证通过了。

posted on 2021-04-01 17:04  luyi07  阅读(596)  评论(0编辑  收藏  举报

导航