多参数函数共轭梯度法寻找极值:gsl_multimin_fdfminimizer

gsl库

在ubuntu下,只需
sudo apt-get install libgsl23
或者
sudo apt-get install libgsl-dev
即可安装

gsl_multimin_fdfminimizer

众所周知,共轭梯度法是很有效的多元函数找极值算法。gsl是gnu scientific library的缩写,gnu是GNU's not Unix的缩写,是个自由操作系统统称,下面有很多软件,gsl是其中之一。gsl_multimin_fdfminimizer 是gsl中的共轭梯度法求解器,如下是使用代码示例。

使用步骤为:

  1. 定义函数\(f(\vec{x}, void * params)\),params是用到的其他参数,都用一个指针传递。
  2. 定义一阶导数\(f'(\vec{x}, void * params)\)
  3. \(f, f'\)集成在一块,定义my_fdf
  4. 定义并初始化一个 gsl_multimin_fdfminimizer 对象,然后进行迭代,直到在某处梯度矢量的绝对值小于某个值。

代码示例

#include<iostream>
using namespace std;

#include<gsl/gsl_multimin.h>
#include<gsl/gsl_sf_bessel.h>

int count_myf = 0;

/* Paraboloid centered on (p[0],p[1]), with
   scale factors (p[2],p[3]) and minimum value p[4] */
double my_f (const gsl_vector *v, void *params)
{
        count_myf ++;
        double x, y;
        double *p = (double *)params;
        x = gsl_vector_get(v, 0);
        y = gsl_vector_get(v, 1);
        return p[2] * (x - p[0]) * (x - p[0]) +
                p[3] * (y - p[1]) * (y - p[1]) + p[4];
}

/* The gradient of f, df = (df/dx, df/dy). */
void my_df (const gsl_vector *v, void *params, gsl_vector *df)
{
        double x, y;
        double *p = (double *)params;
        x = gsl_vector_get(v, 0);
        y = gsl_vector_get(v, 1);
        gsl_vector_set(df, 0, 2.0 * p[2] * (x - p[0]));
        gsl_vector_set(df, 1, 2.0 * p[3] * (y - p[1]));
}

/* Compute both f and df together. */
void my_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *df)
{
        *f = my_f(x, params);
        my_df(x, params, df);
}

int main(){

        // define the multi-var function to be optimized
        gsl_multimin_function_fdf my_func;
        /* Paraboloid center at (1,2), scale factors (10, 20), minimum value 30 */
        double p[5] = { 1.0, 2.0, 10.0, 20.0, 30.0 };
        my_func.n = 2; /* number of function components */
        my_func.f = &my_f;
        my_func.df = &my_df;
        my_func.fdf = &my_fdf;
        my_func.params = (void *)p;

        // set initial position x
        gsl_vector *x;
        x = gsl_vector_alloc(2);
        gsl_vector_set( x, 0, 5.0 );
        gsl_vector_set( x, 1, 7.0 );

        cout<<" f(1,2) = "<< my_func.f( x, my_func.params ) <<endl;

        // set minimization type
        const gsl_multimin_fdfminimizer_type *T;
        T = gsl_multimin_fdfminimizer_conjugate_fr;

        // set minimizer
        gsl_multimin_fdfminimizer *s;
        s = gsl_multimin_fdfminimizer_alloc( T, 2 );
        gsl_multimin_fdfminimizer_set( s, &my_func, x, 0.01, 1E-4 );

        int iter = 0, status;
        do{
                iter++;
                status = gsl_multimin_fdfminimizer_iterate( s );

                if( status ) break;

                status = gsl_multimin_test_gradient( s->gradient, 1E-3 );

                if( status == GSL_SUCCESS )
                        printf( " Minimum found at :\n" );
                printf( "%5d %.10f %.10f %10.5f\n", iter, gsl_vector_get( s->x, 0 ), gsl_vector_get( s->x, 1 ), s->f );
        }
        while ( status == GSL_CONTINUE && iter < 100 );

        cout<<" count_myf = "<<count_myf<<endl;

        gsl_multimin_fdfminimizer_free( s );
        gsl_vector_free( x );

        return 0;
}

编译、运行、结果

编译:
g++ test_multimin_conjugate_gradient.cpp -lgsl -lblas
运行:
./a.out
结果:
f(1,2) = 690
1 4.9962860932 6.9907152331 687.84780
2 4.9888582797 6.9721456993 683.55456
3 4.9740026527 6.9350066316 675.01278
4 4.9442913985 6.8607284964 658.10798
5 4.8848688903 6.7121722258 625.01340
6 4.7660238739 6.4150596847 561.68440
7 4.5283338410 5.8208346026 446.46694
8 4.0529537753 4.6323844382 261.79422
9 3.1021936438 2.2554841096 75.49762
10 2.8518518519 1.6296296296 67.03704
11 2.1908758523 1.7618248295 45.31640
12 0.8689238532 2.0262152294 30.18555
Minimum found at :
13 1.0000000000 2.0000000000 30.00000
count_myf = 28
所以一共取了13个点,\(f(\vec{x})\)函数被调用了28次。收敛的很好,误差很小。把这些点画在二维平面上:

import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt('screen')
x, y = [], []
for t in data:
    x.append(t[0])
    y.append(t[1])
fig, ax = plt.subplots()
ax.scatter(x,y)

#建立步长为0.01,即每隔0.01取一个点
step = 0.01
x = np.arange(-10,10,step)
y = np.arange(-10,10,step)
#也可以用x = np.linspace(-10,10,100)表示从-10到10,分100份

#将原始数据变成网格数据形式
X,Y = np.meshgrid(x,y)
#写入函数,z是大写
Z = 10*(X-1)**2 + 20*(Y-2)**2 + 30
#设置打开画布大小,长10,宽6
#plt.figure(figsize=(10,6))
#填充颜色,f即filled
#ax.contourf(X,Y,Z)
#画等高线
ax.contour(X,Y,Z)
plt.show()

image
如果仔细算斜率,会发现确实只有两个下降方向,与共轭梯度理论一致。更重要的是,一共只取了13个点。gsl的文档中有说明,每次一维最优化只需要达到很低的精度即可,然而也还是能保证一共只需2个下降方向,这大概是他们设计的算法的力量。这是使用gsl库,而不自己重写共轭梯度法的好处。

自由参数个数\(n=50,100,150,...,1000\)

下面的代码测试\(n\)值更大时,迭代次数的增长规律,\(n, iter\)的值被输出到文件。


#include<iostream>
using namespace std;
#include<iomanip>
#include<fstream>

#include<gsl/gsl_multimin.h>
#include<gsl/gsl_sf_bessel.h>

int n = 100;

double my_f (const gsl_vector *v, void *params)
{
        double *p = (double *)params;
        double x, f = 0;
        for(int i=0;i<n;i++){
                x = gsl_vector_get(v, i);
                f += p[n+i] * ( x - p[i] ) * (x - p[i] );
        }
        f += p[ 2*n ];

        return f;
}

/* The gradient of f, df = (df/dx, df/dy). */
void my_df (const gsl_vector *v, void *params,
                gsl_vector *df)
{
        double x;
        double *p = (double *)params;
        for(int i=0;i<n;i++){
                x = gsl_vector_get(v, i);
                gsl_vector_set(df, i, 2.0 * p[n+i] * ( x - p[i] ) );
        }
}

/* Compute both f and df together. */
void my_fdf (const gsl_vector *x, void *params,
                double *f, gsl_vector *df)
{
        *f = my_f(x, params);
        my_df(x, params, df);
}

void minimizer( ofstream & fout ){

        // define the multi-var function to be optimized
        gsl_multimin_function_fdf my_func;
        double *p = new double [ 2*n + 1 ];
        for(int i=0;i<n;i++){
                p[i] = i+1; p[n+i] = 10*i+10;
        }
        p[2*n] = 100;
        my_func.n = n; /* number of function components */
        my_func.f = &my_f;
        my_func.df = &my_df;
        my_func.fdf = &my_fdf;
        my_func.params = (void *)p;

        // set initial position x
        gsl_vector *x;
        x = gsl_vector_alloc(n);
        for(int i=0;i<n;i++) gsl_vector_set( x, i, 10.0 );

        // set minimization type
        const gsl_multimin_fdfminimizer_type *T;
        T = gsl_multimin_fdfminimizer_conjugate_fr;

        // set minimizer
        gsl_multimin_fdfminimizer *s;
        s = gsl_multimin_fdfminimizer_alloc( T, n );
        gsl_multimin_fdfminimizer_set( s, &my_func, x, 0.01, 1E-4 );


        int iter = 0, status;
        do{
                iter++;
                status = gsl_multimin_fdfminimizer_iterate( s );

                if( status ) break;

                status = gsl_multimin_test_gradient( s->gradient, 1E-3 );

                if( status == GSL_SUCCESS ){
                        fout<<n<<"\t"<<iter<<endl;
                        printf( " n=%d, Minimum found after %d iterations \n", n, iter );
                        /*
                        cout<<"\t "<<iter << setprecision(14);
                        for(int j=0;j<n;j++) cout<<"\t "<< gsl_vector_get( s->x, j );
                        cout<<"\t "<< s->f <<endl;
                        */
                }
        }
        while ( status == GSL_CONTINUE && iter < 10000 );

        gsl_multimin_fdfminimizer_free( s );
        gsl_vector_free( x );
}

int main(){

        ofstream fout("iterater.txt");

        for(n=50;n<=1000;n+=50) minimizer( fout );

        fout.close();

        return 0;
}

从文件中读取\(n,iter\)的值以后,作图如下

import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt('../test/gsl/iterater.txt')
x, y = [], []
for t in data:
    x.append(t[0])
    y.append(t[1])
fig, ax = plt.subplots()
ax.scatter(x,y)
ax.set_xlim(0,1050)
ax.set_ylim(0,750)
ax.set_xlabel("# of free parameter in the multi function")
ax.set_ylabel("# of iteration to converge for |g|<1E-3")
plt.show()

image

条件优化:控制\(x^2+y^2 \approx 1\)

优化函数:\(f(\vec{r}) = \frac{ 10 ( x^2 + 2 y^2 ) }{ x^2 + y^2 }\),这个函数的极小值 20 在 \(y=0\) 时取得,对于 \(x\) 没有限制。
假定现在我们需要控制\(|\vec{r}|\)不要偏离1太远。
策略:加上一个函数:\(g(\vec{r}) = 100 ( |\vec{r}| - 1 )^2, if |\vec{r}|>1, 0<|\vec{r}| < 0.5; 0, else\),人为地抬高\(\vec{r}\)太小或太大的区域,以此完成目标。

#include<iostream>
using namespace std;
#include<iomanip>
#include<fstream>

#include<gsl/gsl_multimin.h>
#include<gsl/gsl_sf_bessel.h>

double my_f (const gsl_vector *v, void *params)
{
        double x, y, norm, z ;
        x = gsl_vector_get(v, 0);
        y = gsl_vector_get(v, 1);
        norm = x*x + y*y;

        z = 10 * ( x*x + 2*y*y ) / ( x*x + y*y );
        if( norm > 1 || norm < 0.5 ) return z + 100 * (norm-1) * (norm-1);
        else return z;
}

/* The gradient of f, df = (df/dx, df/dy). */
void my_df (const gsl_vector *v, void *params,
                gsl_vector *df)
{
        double x, y, norm, z;
        x = gsl_vector_get(v, 0);
        y = gsl_vector_get(v, 1);
        norm = x*x + y*y;

        z = - 20 * x * y * y / ( x*x + y*y ) / ( x*x + y*y );
        if ( norm >= 1 || norm <= 0.5 ) z += 400 * x * ( norm -1 );
        gsl_vector_set(df, 0, z );

        z = 20 * x * x * y / ( x*x + y*y ) / ( x*x + y*y );
        if ( norm >= 1 || norm <= 0.5 ) z += 400 * y * ( norm -1 );
        gsl_vector_set(df, 1, z );
}

/* Compute both f and df together. */
void my_fdf (const gsl_vector *x, void *params,
                double *f, gsl_vector *df)
{
        *f = my_f(x, params);
        my_df(x, params, df);
}

/*
 * int n: number of variables
 * double * x_init: initial position
 * double step: size of the first trial step
 * double tol: 1-d optimization is finished when gradient g is perpendicular to the search direction p to a relative accuracy tol: \vec{p} \cdot \vec{g} < tol * | \vec{p} | * | \vec{g} |, 0.1 should be enough for most purposes, 0 means absolute orthogonal which is expensive.
 * double epsabs: criteria of whether the norm of gradient is small enough: |g| < epsabs
 * const int max_iter: max iteration number
 */
void GSL_fdf_minimizer( int n, double *x_init, double step, double tol, double epsabs, const int max_iter,
                double (*m_f)( const gsl_vector *, void *), void (*my_df)( const gsl_vector *, void *, gsl_vector *), void (*my_fdf)( const gsl_vector *, void *, double *, gsl_vector *) ){

        // define the multi-var function to be optimized
        gsl_multimin_function_fdf my_func;
        my_func.n = n; /* number of function components */
        my_func.f = my_f;
        my_func.df = my_df;
        my_func.fdf = my_fdf;
        //my_func.params = (void *)p;

        // set initial position x
        gsl_vector *x;
        x = gsl_vector_alloc(n);
        for(int i=0;i<n;i++) gsl_vector_set( x, i, x_init[i] );

        // set minimization type
        const gsl_multimin_fdfminimizer_type *T;
        T = gsl_multimin_fdfminimizer_conjugate_fr;

        // set minimizer
        gsl_multimin_fdfminimizer *s;
        s = gsl_multimin_fdfminimizer_alloc( T, n );
        gsl_multimin_fdfminimizer_set( s, &my_func, x, step, tol );

        int iter = 0, status;
        do{
                iter++;
                status = gsl_multimin_fdfminimizer_iterate( s );

                if( status ) break;

               status = gsl_multimin_test_gradient( s->gradient, epsabs );
                // test the norm of gradient against tolerance epsabs, returns GSL_SUCCESS if |g| < epsabs

                if( status == GSL_SUCCESS ){
                        printf( " n=%d, Minimum found after %d iterations \n", n, iter );
                }
                cout<<"\t "<<iter ;//<< setprecision(14);
                for(int j=0;j<n;j++) cout<<"\t "<< gsl_vector_get( s->x, j );
                cout<<"\t "<< s->f <<endl;
        }
        while ( status == GSL_CONTINUE && iter < max_iter );

        if( iter == max_iter ) cout<<" Failed to converge, after "<<max_iter<<" iterations"<<endl;

        gsl_multimin_fdfminimizer_free( s );
        gsl_vector_free( x );
}

int main(){

        ofstream fout("iterater.txt");

        int n = 2; // 2-variable
        double x_init[] = {5,7};
        double step = 0.1;
        double tol = 0.001;
        double epsabs = 1E-3;
        int max_iter = 1E6;

        GSL_fdf_minimizer( n, x_init, step, tol, epsabs, max_iter, my_f, my_df, my_fdf );

        fout.close();

        return 0;
}

运行结果:

	 1	 4.94188	 6.91863	 508236
	 2	 4.82563	 6.75588	 461446
	 3	 4.59314	 6.43038	 377587
	 4	 4.12815	 5.7794	 244478
	 5	 3.19817	 4.47742	 85722.6
	 6	 1.33822	 1.87346	 1866.22
	 7	 0.534537	 0.748294	 16.6213
	 8	 0.894672	 0.491013	 12.4873
	 9	 0.683379	 0.192045	 10.7319
	 10	 0.696522	 -0.173815	 10.5862
	 11	 0.694989	 -0.131158	 10.3439
	 12	 0.702905	 -0.0892135	 10.1585
	 13	 0.718737	 -0.00532433	 10.0005
 n=2, Minimum found after 14 iterations 
	 14	 0.719741	 -3.544e-11	 10

与理论预期一致:收敛在\(y=0\)的点上,并且\(|\vec{r}| = 0.719741\)也没有偏离1很远。

posted on 2021-03-20 17:15  luyi07  阅读(717)  评论(0编辑  收藏  举报

导航