Loading

基于flink和drools的实时日志处理

1、背景

日志系统接入的日志种类多、格式复杂多样,主流的有以下几种日志:

  • filebeat采集到的文本日志,格式多样
  • winbeat采集到的操作系统日志
  • 设备上报到logstash的syslog日志
  • 接入到kafka的业务日志

以上通过各种渠道接入的日志,存在2个主要的问题:

  • 格式不统一、不规范、标准化不够
  • 如何从各类日志中提取出用户关心的指标,挖掘更多的业务价值

为了解决上面2个问题,我们基于flink和drools规则引擎做了实时的日志处理服务。

2、系统架构

架构比较简单,架构图如下:

 

各类日志都是通过kafka汇总,做日志中转。

flink消费kafka的数据,同时通过API调用拉取drools规则引擎,对日志做解析处理后,将解析后的数据存储到Elasticsearch中,用于日志的搜索和分析等业务。

为了监控日志解析的实时状态,flink会将日志处理的统计数据,如每分钟处理的日志量,每种日志从各个机器IP来的日志量写到Redis中,用于监控统计。

3、模块介绍

系统项目命名为eagle。

eagle-api:基于springboot,作为drools规则引擎的写入和读取API服务。

eagle-common:通用类模块。

eagle-log:基于flink的日志处理服务。

重点讲一下eagle-log:

对接kafka、ES和Redis

对接kafka和ES都比较简单,用的官方的connector(flink-connector-kafka-0.10和flink-connector-elasticsearch6),详见代码。

特定日志数据侧输出(side output)到kafka

private static final OutputTag<LogEntry> kafkaOutputTag = new OutputTag<LogEntry>("log-kafka-output",
            TypeInformation.of(LogEntry.class)) {
    };
DataStream<LogEntry> kafkaOutputStream = processedStream.getSideOutput(kafkaOutputTag);
sinkLogToKafka(parameter, kafkaOutputStream);

日志统计数据写入到redis

对接Redis,最开始用的是org.apache.bahir提供的redis connector,后来发现灵活度不够,就使用了Jedis。

在将统计数据写入redis的时候,最开始用的keyby分组后缓存了分组数据,在sink中做统计处理后写入,参考代码如下:

        String name = "redis-agg-log";
        DataStream<Tuple2<String, List<LogEntry>>> keyedStream = dataSource.keyBy((KeySelector<LogEntry, String>) log -> log.getIndex())
                .timeWindow(Time.seconds(windowTime)).trigger(new CountTriggerWithTimeout<>(windowCount, TimeCharacteristic.ProcessingTime))
                .process(new ProcessWindowFunction<LogEntry, Tuple2<String, List<LogEntry>>, String, TimeWindow>() {
                    @Override
                    public void process(String s, Context context, Iterable<LogEntry> iterable, Collector<Tuple2<String, List<LogEntry>>> collector) {
                        ArrayList<LogEntry> logs = Lists.newArrayList(iterable);
                        if (logs.size() > 0) {
                            collector.collect(new Tuple2(s, logs));
                        }
                    }
                }).setParallelism(redisSinkParallelism).name(name).uid(name);

后来发现这样做对内存消耗比较大,其实不需要缓存整个分组的原始数据,只需要一个统计数据就OK了,优化后:

        String name = "redis-agg-log";
        DataStream<LogStatWindowResult> keyedStream = dataSource.keyBy((KeySelector<LogEntry, String>) log -> log.getIndex())
                .timeWindow(Time.seconds(windowTime))
                .trigger(new CountTriggerWithTimeout<>(windowCount, TimeCharacteristic.ProcessingTime))
                .aggregate(new LogStatAggregateFunction(), new LogStatWindowFunction())
                .setParallelism(redisSinkParallelism).name(name).uid(name);

这里使用了flink的聚合函数和Accumulator,通过flink的agg操作做统计,减轻了内存消耗的压力。

使用broadcast广播drools规则引擎

1、drools规则流通过broadcast map state广播出去。

2、kafka的数据流connect规则流处理日志。

//广播规则流
env.addSource(new RuleSourceFunction(ruleUrl)).name(ruleName).uid(ruleName).setParallelism(1)
                .broadcast(ruleStateDescriptor);

//kafka数据流
FlinkKafkaConsumer010<LogEntry> source = new FlinkKafkaConsumer010<>(kafkaTopic, new LogSchema(), properties);
env.addSource(source).name(kafkaTopic).uid(kafkaTopic).setParallelism(kafkaParallelism);
//数据流connect规则流处理日志 BroadcastConnectedStream<LogEntry, RuleBase> connectedStreams = dataSource.connect(ruleSource); connectedStreams.process(new LogProcessFunction(ruleStateDescriptor, ruleBase)).setParallelism(processParallelism).name(name).uid(name);

具体细节参考开源代码。

3、drools规则例子:

package logrules
import com.alarm.eagle.util.DateUtil;
import com.alarm.eagle.log.LogEntry;
import org.slf4j.Logger;
import com.alarm.eagle.util.Md5Util;
import com.alarm.eagle.util.RegexUtil
import java.util.Date;
global Logger LOG;
rule "log_app_1"
    no-loop true
    salience 100
    when
        $log : LogEntry( index == "log_app_1", $msg : message)
    then
        LOG.debug("receive log_app_1 log, id:[{}]", $log.getId());
        String logTime = RegexUtil.extractString("(\\d{4}-\\d{2}-\\d{2} \\d{2}:\\d{2}:\\d{2}.\\d{3})", $msg);
        if (logTime == null) {
            LOG.warn("invalid date or time, log: {}", $msg);
            return;
        }
        Date date = DateUtil.convertFromString("yyyy-MM-dd HH:mm:ss.SSS", logTime);
        $log.setTimestamp(date != null ? date : $log.getAtTimestamp());

        long delayTime = (System.currentTimeMillis() - $log.getTimestamp().getTime())/1000;
        if (delayTime > 5*24*3600 || delayTime < -5*24*3600) {
            LOG.warn("Too early or too late log, ignore it, delay:{}, log:{}", delayTime, $log.getTimestamp().getTime());
            return;
        }
        $log.dealDone();
        LOG.debug("out -----log_app_1------");
end

4、小结

本系统提供了一个基于flink的实时数据处理参考,对接了kafka、redis和elasticsearch,通过可配置的drools规则引擎,将数据处理逻辑配置化和动态化。

对于处理后的数据,也可以对接到其他sink,为其他各类业务平台提供数据的解析、清洗和标准化服务。

 

项目地址:

Gitee:https://gitee.com/luxiaoxun001/eagle

GitHub:https://github.com/luxiaoxun/eagle

 

参考:

http://www.drools.org.cn/

https://flink.apache.org/

https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/connectors/kafka.html

https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/elasticsearch.html

 

posted @ 2020-06-27 12:33  阿凡卢  阅读(8719)  评论(11编辑  收藏  举报