最大子序列和问题
问题:
给定一整数序列A1, A2,... An (可能有负数),求A1~An的一个子序列Ai~Aj,使得Ai到Aj的和最大。
例如:整数序列-2, 11, -4, 13, -5, 2, -5, -3, 12, -9的最大子序列的和为19。对于这个问题,最简单也是最容易想到的那就是穷举所有子序列的方法。利用三重循环,依次求出所有子序列的和然后取最大的那个。当然算法复杂度会达到O(n^3)。
int max_sub_sum1(int a[],int size) { int maxSum = 0; for(int i = 0; i < size; i++ ) for(int j = 1; j < size; j++ ) { int thisSum = 0; for(int k = i; k <= j; k++ ) thisSum += a[k]; if(thisSum > maxSum ) maxSum = thisSum; } return maxSum; }
这个算法很简单,i表示子序列起始下标,j表示子序列结束下标,遍历子序列的开头和结束下标,计算子序列的和,然后判断最大子序列。很明显的看出算法复杂度是O(n^3)。
显然这种方法不是最优的,下面给出一个算法复杂度为O(n)的线性算法实现,算法的来源于Programming Pearls一书。在给出线性算法之前,先来看一个对穷举算法进行优化的算法,它的算法复杂度为O(n^2)。其实这个算法只是对对穷举算法稍微做了一些修改:其实子序列的和我们并不需要每次都重新计算一遍。假设Sum(i, j)是A[i] ... A[j]的和,那么Sum(i, j+1) = Sum(i, j) + A[j+1]。利用这一个递推,我们就可以得到下面这个算法:
int max_sub_sum2(int a[],int size) { int max = a[0]; for(int i = 0; i < size; i++) { int v = 0; for(int j = i; j < size; j++) { v = v + a[j]; //Sum(i, j+1) = Sum(i, j) + A[j+1] if(v > max) max = v; } } return max; }
那怎样才能达到线性复杂度呢?这里运用动态规划的思想。先看一下源代码实现:
int max_sub_sum3(int a[], int size) { int max = 0,temp_sum = 0; for(int i = 0; i < size; i++) { temp_sum += a[i]; if(temp_sum > max) max = temp_sum; else if(temp_sum < 0) temp_sum = 0; } return max; }
在这一遍扫描数组当中,从左到右记录当前子序列的和temp_sum,若这个和不断增加,那么最大子序列的和max也不断增加(不断更新max)。如果往前扫描中遇到负数,那么当前子序列的和将会减小。此时temp_sum 将会小于max,当然max也就不更新。如果temp_sum降到0时,说明前面已经扫描的那一段就可以抛弃了,这时将temp_sum置为0。然后,temp_sum将从后面开始将这个子段进行分析,若有比当前max大的子段,继续更新max。这样一趟扫描结果也就出来了。
分治法:
最大子序列和可能出现在三个地方:整个出现在输入数据的左半部分,整个出现在输入数据的右半部分,或者跨越输入数据的中部从而占据左右两个半部分。
/** * Recursive maximum contiguous subsequence sum algorithm. * Finds maximum sum in subarray spanning a[left..right]. * Does not attempt to maintain actual best sequence. */ int maxSumRec( const vector<int> & a, int left, int right ) { if( left == right ) // Base case if( a[ left ] > 0 ) return a[ left ]; else return 0; int center = ( left + right ) / 2; int maxLeftSum = maxSumRec( a, left, center ); int maxRightSum = maxSumRec( a, center + 1, right ); int maxLeftBorderSum = 0, leftBorderSum = 0; for( int i = center; i >= left; i-- ) { leftBorderSum += a[ i ]; if( leftBorderSum > maxLeftBorderSum ) maxLeftBorderSum = leftBorderSum; } int maxRightBorderSum = 0, rightBorderSum = 0; for( int j = center + 1; j <= right; j++ ) { rightBorderSum += a[ j ]; if( rightBorderSum > maxRightBorderSum ) maxRightBorderSum = rightBorderSum; } return max3( maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum ); } /** * Driver for divide-and-conquer maximum contiguous * subsequence sum algorithm. */ int maxSubSum3( const vector<int> & a ) { return maxSumRec( a, 0, a.size( ) - 1 ); }