snort中的frag2预处理器,存储IP分片用的是二叉树,一直看不明白二叉树的代码部分,不知道代码里面操作的含义。偶然查找splay tree关键词,发现它用的是伸展树,疑问解决了!
假设想要对一个二叉查找树执行一系列的查找操作。为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置。于是想到设计一个简单方法,在每次查找之后对树进行重构,把被查找的条目搬移到离树根近一些的地方。splay tree应运而生。splay tree是一种自调整形式的二叉查找树,它会沿着从某个节点到树根之间的路径,通过一系列的旋转把这个节点搬移到树根去。
重构方法
1、单旋:在查找完位于节点x中的条目i之后,旋转链接x和其父节点的边。(除非x就是树根)
2、搬移至树根:在查找完位于节点x中的条目i之后,旋转链接x和其父节点的边,然后重复这个操作直至x成为树根。
splay tree的重构方法和搬移至树根的方法相似,它也会沿着查找路径做自底向上的旋转,将被查找条目移至树根。但不同的是,它的旋转是成对进行的,顺序取决于查找路径的结构。为了在节点x处对树进行splay操作,我们需要重复下面的步骤,直至x成为树根为止:
1、第一种情况:如果x的父节点p(x)是树根,则旋转连接x和p(x)的边。(这种情况是最后一步)
2、第二种情况:如果p(x)不是树根,而且x和p(x)本身都是左孩子或者都是右孩子,则先旋转连接p(x)和x的祖父节点g(x)的边,然后再旋转连接x和p(x)的边。
3、第三种情况:如果p(x)不是树根,而且x是左孩子,p(x)是右孩子,或者相反,则先旋转连接x和p(x)的边,再旋转连接x和新的p(x)的边。
在节点x处进行splay操作的时间是和查找x所需的时间成比例的。splay操作不单是把x搬移到了树根,而且还把查找路径上的每个节点的深度都大致减掉了一半。
splay tree支持的操作
1、access(i,t):如果i在树t中,则返回指向它的指针,否则返回空指针。为了实现access(i,t),可以从树t的根部向下查找i。如果查找操作遇到了一个含有i的节点x,就在x处进行splay操作,并返回指向x的指针,访问结束。如果遇到了空指针,表示i不在树中,此时就在最后一个非空节点处进行splay操作,然后返回空指针。如果树是空的,将忽略掉splay操作。
2、insert(i,t):将条目i插入树t中(假设其尚不存在)。为了实现insert(i,t),首先执行split(i,t),然后把t换成一个由新的包含有i的根节点组成的树,这个根节点的左右子树分别是split返回的树t1和t2。
3、delete(i,t):从树t中删除条目i(假设其已经存在)。为了实现delete(i,t),首先执行access(i,t),然后把t换成其左子树和右子树join之后的新树。
4、join(t1,t2):将树t1和t2合并成一棵树,其中包含之前两棵树的所有条目,并返回合并之后的树。这个操作假设t1中的所有条目都小于t2中的条目,操作完成之后会销毁t1和t2。为了实现join(t1,t2),首先访问t1中最大的条目i。访问结束之后,t1的根节点中包含的就是i,它的右孩子显然为空。于是把t2作为这个根节点的右子树并返回完成之后的新树即可实现join 操作。
5、split(i,t):构建并返回两棵树t1和t2,其中t1包含t中所有小于等于i的条目,t2包含t中所有大于i的条目。操作完成之后销毁t。为了实现split(i,t),首先执行access(i,t),然后根据新根节点中的值是大于还是小于等于i来切断这个根节点的左链接或右链接,并返回形成的两棵树。
Splay Tree的优势所在
由于Splay Tree仅仅是不断调整,并没有引入额外的标记,因而树结构与标准BST没有任何不同,从空间角度来看,它比Treap、Red-Black Tree、AVL要高效得多。因为结构不变,因此只要是通过左旋和右旋进行的操作对Splay Tree性质都没有丝毫影响,因而它也提供了BST中最丰富的功能,包括快速的拆分和合并(这里指的是将原树拆分成两棵子树,其中一棵子树所有节点都比另一子树小,以及它的逆过程),并且实现极为便捷。这一点是其它结构较难实现的。其时间效率也相当稳定,和Treap基本相当。