Dijkstra算法 最短路径 (部分)
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
bool s[maxnum]; // 判断是否已存入该点到S集合中
for(int i=1; i<=n; ++i)
{
dist[i]=c[v][i]; //dist[i]为节点路劲长度,c[v][i]为点与点之间的路径长度。
s[i]=0;
// 初始都未用过该点,s[i]为标志数组。
if(dist[i]==maxint)
prev[i]=0;
else
prev[i]=v;
}
dist[v] = 0;
s[v] = 1;
//依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
//一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
for(int i=2; i<=n; ++i)
{
int tmp = maxint;
int u = v;
// 找出当前未使用的点j的dist[j]最小值
for(int j=1; j<=n; ++j)
if((!s[j]) && dist[j]<tmp)
{
u = j; // u保存当前邻接点中距离最小的点的号码
tmp = dist[j];
}
s[u] = 1; // 表示u点已存入S集合中
// 更新dist
for(int j=1; j<=n; ++j)
if((!s[j]) && c[u][j]<maxint)
{
int newdist = dist[u] + c[u][j];
if(newdist < dist[j])
{
dist[j] = newdist;
prev[j] = u;
}
}
}
}