C4.5决策树个人笔记

决策树优点:

  可处理具有不相关特征的数据、可很容易地构造出易于理解的规则,而规则通常易于解释和理解。

决策树缺点:

  比如处理缺失数据时的困难、过度拟合以及忽略数据集中属性之间的相关性等。

 

在ID3算法完全掌握的基础上,学习C4.5算法,需要明白以下几件事:

1、C4.5如何划分数据集?——用信息增益比;

2、连续型属性如何处理?——选择划分属性时,当做离散变量;选择划分点时,用信息增益来选。

3、如何剪枝?——基于误判的剪枝和悲观剪枝,后者更加常用。

 

参考:

http://shiyanjun.cn/archives/428.html(C4.5算法的实现原理)

http://blog.sina.com.cn/s/blog_68ffc7a40100urn3.html(C4.5算法的实现原理)

http://www.cnblogs.com/zhangchaoyang/articles/2842490.html(有对悲观剪枝比较详细的介绍)

http://www.cnblogs.com/superhuake/archive/2012/07/25/2609124.html(有对剪枝的方法叙述性的介绍和悲观剪枝的介绍)

http://dataunion.org/5107.html(叙述性介绍几种决策树,对剪枝的方法有介绍)

http://blog.sina.com.cn/s/blog_60acd6780100djcf.html(C4.5处理连续属性,第2条可只在类别和属性值均发生变化的地方作为分割点进行计算)

http://blog.sina.com.cn/s/blog_4e4dec6c0101fdz6.html(决策树的剪枝理论介绍)

http://www.cnblogs.com/junyuhuang/p/4572408.html(决策树算法之悲观剪枝算法)

http://blog.csdn.net/o1101574955/article/details/50371499(用python实现C4.5算法,并进行悲观剪枝)

 https://www.quora.com/What-are-some-good-resources-for-learning-about-decision-trees(学习决策树的好资源,英文的)

posted on 2016-06-15 11:24  鹿抬头  阅读(439)  评论(0编辑  收藏  举报

导航