optimizer.zero_grad()
传统的训练函数,一个batch是这么训练的:
for i,(images,target) in enumerate(train_loader): # 1. input output images = images.cuda(non_blocking=True) target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True) outputs = model(images) loss = criterion(outputs,target) # 2. backward optimizer.zero_grad() # reset gradient loss.backward() optimizer.step()
过程:
- 获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
- optimizer.zero_grad():清空过往梯度;
- loss.backward():反向传播,计算当前梯度;
- optimizer.step():根据梯度更新网络参数
简单的说就是进来一个batch的数据,计算一次梯度,更新一次网络,使用梯度累加是这么写的:
for i,(images,target) in enumerate(train_loader): # 1. input output images = images.cuda(non_blocking=True) target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True) outputs = model(images) loss = criterion(outputs,target) # 2.1 loss regularization loss = loss/accumulation_steps # 2.2 back propagation loss.backward() # 3. update parameters of net if((i+1)%accumulation_steps)==0: # optimizer the net optimizer.step() # update parameters of net optimizer.zero_grad() # reset gradient
过程:
- 获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
- loss.backward()反向传播,计算当前梯度;
- 多次循环步骤1-2,不清空梯度,使梯度累加在已有梯度上;
- 梯度累加了一定次数后,先optimizer.step()根据累计的梯度更新网络参数,然后optimizer.zero_grad()清空过往梯度,为下一波梯度累加做准备;
总结来说:梯度累加就是,每次获取1个batch的数据,计算1次梯度,梯度不清空,不断累加,累加一定次数后,根据累加的梯度更新网络参数,然后清空梯度,进行下一次循环。
一定条件下,batchsize越大训练效果越好,梯度累加则实现了batchsize的变相扩大,如果accumulation_steps为8,则batchsize"变相"扩大了8倍,学习率也要适当放大。