Pytorch实现线性回归模型

初识pytorch,本文基于pytorch构建最基本的神经网络,实现线性回归模型。

(1)构造一组输入数据X和其对应的标签y

x_values = [i for i in range(11)]
x_train = np.array(x_values, dtype=np.float32)#np.array格式
x_train = x_train.reshape(-1, 1)#把数据转换成矩阵,防止出错
y_values = [2*i + 1 for i in x_values]#定义回归方程y=2x+1
y_train = np.array(y_values, dtype=np.float32)#np.array格式
y_train = y_train.reshape(-1, 1)

(2)构建模型

 class LinearRegressionModel(nn.Module):#定义类,import torch.nn as nn,nn.Module:只用写用哪个层
    def __init__(self, input_dim, output_dim):#构造函数,写用到哪些层
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)  #nn.Linear()全连接层,传入输入维度,输出维度

    def forward(self, x):#前向传播函数,用到的层如何使用的
        out = self.linear(x)#在全连接层中输入x得到结果
        return out

(3)指定好参数和损失函数

input_dim = 1
output_dim = 1

model = LinearRegressionModel(input_dim, output_dim)#定义模型

epochs = 1000#一共迭代1000次
learning_rate = 0.01#学习率
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)#优化器,SGD,传入需要优化的参数和学习率
criterion = nn.MSELoss()#损失函数,分类任务常用交叉熵损失,回归任务常用MSE均方差损失函数

(4)训练模型

for epoch in range(epochs):#遍历1000次
    epoch += 1
    # np.array格式不能直接进行训练,转换成tensor格式
    inputs = torch.from_numpy(x_train)
    labels = torch.from_numpy(y_train)

    # 梯度要清零每一次迭代
    optimizer.zero_grad() #如果不清空梯度会累加起来

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs, labels)

    # 返向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()
    if epoch % 50 == 0:
        print('epoch {}, loss {}'.format(epoch, loss.item()))

结果:

(5)测试模型预测结果

predicted = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()#进行一次前向传播

结果:

(6)模型的保存与读取

torch.save(model.state_dict(), 'model.pkl')#model.state_dict():模型的权重参数
model.load_state_dict(torch.load('model.pkl'))#读取

(7)使用GPU进行训练

只需要把数据和模型传入到cuda里面就可以了,与CPU训练代码有两点不同,已加注释说明

import torch
import torch.nn as nn
import numpy as np


class LinearRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)  

    def forward(self, x):
        out = self.linear(x)
        return out

input_dim = 1
output_dim = 1

model = LinearRegressionModel(input_dim, output_dim)


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#指定设备cuda,如果cuda配置好的用cuda否则用CPU
model.to(device)#把模型放入cuda


criterion = nn.MSELoss()


learning_rate = 0.01

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 1000
for epoch in range(epochs):
    epoch += 1
    inputs = torch.from_numpy(x_train).to(device)#把输入x传入cuda
    labels = torch.from_numpy(y_train).to(device)#把输入y传入cuda

    optimizer.zero_grad() 

    outputs = model(inputs)

    loss = criterion(outputs, labels)

    loss.backward()

    optimizer.step()

    if epoch % 50 == 0:
        print('epoch {}, loss {}'.format(epoch, loss.item()))

posted @ 2023-05-16 11:30  Frommoon  阅读(138)  评论(0编辑  收藏  举报