Spring依赖注入的方式

依赖注入底层原理流程图: https://www.processon.com/view/link/5f899fa5f346fb06e1d8f570

首先分两种:

  1. 手动注入
  2. 自动注入

手动注入

在XML中定义Bean时,就是手动注入,因为是程序员手动给某个属性指定了值

<bean name="userService" class="com.luban.service.UserService">
	<property name="orderService" ref="orderService"/>
</bean>

上面这种底层是通过set方法进行注入。

<bean name="userService" class="com.luban.service.UserService">
	<constructor-arg index="0" ref="orderService"/>
</bean>

上面这种底层是通过构造方法进行注入。

所以手动注入的底层也就是分为两种:

  1. set方法注入
  2. 构造方法注入

自动注入

自动注入又分为两种:

  1. spring自带的自动注入
  2. @Autowired注解的自动注入

spring自带的自动注入(了解)

在XML中,我们可以在定义一个Bean时去指定这个Bean的自动注入模式:

  1. byType
  2. byName
  3. constructor
  4. default
  5. no

比如:

<bean id="userService" class="com.luban.service.UserService" autowire="byType"/>

这么写,表示Spring会自动的给userService中所有的属性自动赋值(不需要这个属性上有@Autowired注解,但需要这个属性有对应的set方法)。

源码如下

//是否在beandefinition中设置了属性值
		PropertyValues pvs = (mbd.hasPropertyValues() ? mbd.getPropertyValues() : null);
		//mbd.getResolvedAutowireMode()判断是BY_NAME或者BY_TYPE 比如@bean注解后面设置BY_NAME或者BY_TYPE,一般@autowire不会进
		if (mbd.getResolvedAutowireMode() == AUTOWIRE_BY_NAME || mbd.getResolvedAutowireMode() == AUTOWIRE_BY_TYPE) {
			MutablePropertyValues newPvs = new MutablePropertyValues(pvs);
			// 通过名字找到所有属性值,如果是 bean 依赖,先初始化依赖的 bean。记录依赖关系
			// Add property values based on autowire by name if applicable.
			if (mbd.getResolvedAutowireMode() == AUTOWIRE_BY_NAME) {
				autowireByName(beanName, mbd, bw, newPvs);
			}
			// 通过类型装配。复杂一些
			// Add property values based on autowire by type if applicable.
			if (mbd.getResolvedAutowireMode() == AUTOWIRE_BY_TYPE) {
				autowireByType(beanName, mbd, bw, newPvs);
			}
			pvs = newPvs;
		}

byName

源码如下

protected void autowireByName(
			String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) {
		//找到属性名:对应set方法名的,这里propertyName是指set方法名
		String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw);
		for (String propertyName : propertyNames) {
			//是否存在该beanfinition
			if (containsBean(propertyName)) {
				//创建或者获取对应beanName的bean
				Object bean = getBean(propertyName);
				//给属性赋值
				pvs.add(propertyName, bean);
				//添加依赖关系
				registerDependentBean(propertyName, beanName);
				if (logger.isTraceEnabled()) {
					logger.trace("Added autowiring by name from bean name '" + beanName +
							"' via property '" + propertyName + "' to bean named '" + propertyName + "'");
				}
			}
			else {
				if (logger.isTraceEnabled()) {
					logger.trace("Not autowiring property '" + propertyName + "' of bean '" + beanName +
							"' by name: no matching bean found");
				}
			}
		}
	}

unsatisfiedNonSimpleProperties源码

protected String[] unsatisfiedNonSimpleProperties(AbstractBeanDefinition mbd, BeanWrapper bw) {
		Set<String> result = new TreeSet<>();
		PropertyValues pvs = mbd.getPropertyValues();//beandefinition的属性名称和属性值
		//属性描述器,没有属性的时候也存在该对象,writeMethod指set方法,readMethod指get方法,name指set方法名称
		PropertyDescriptor[] pds = bw.getPropertyDescriptors();
		for (PropertyDescriptor pd : pds) {
			if (pd.getWriteMethod() != null && !isExcludedFromDependencyCheck(pd) && !pvs.contains(pd.getName()) &&
					!BeanUtils.isSimpleProperty(pd.getPropertyType())) {
				result.add(pd.getName());
			}
		}
		return StringUtils.toStringArray(result);
	}

在创建Bean的过程中,在填充属性时,Spring会去解析当前类,把当前类的所有方法都解析出来,Spring会去解析每个方法得到对应的PropertyDescriptor对象,PropertyDescriptor中有几个属性:

  1. name:这个name并不是方法的名字,而是拿方法名字进过处理后的名字
    1. 如果方法名字以“get”开头,比如“getXXX”,那么name=XXX
    2. 如果方法名字以“is”开头,比如“isXXX”,那么name=XXX
    3. 如果方法名字以“set”开头,比如“setXXX”,那么name=XXX
  2. readMethodRef:表示get方法的Method对象的引用
  3. readMethodName:表示get方法的名字
  4. writeMethodRef:表示set方法的Method对象的引用
  5. writeMethodName:表示set方法的名字
  6. propertyTypeRef:如果有get方法那么对应的就是返回值的类型,如果是set方法那么对应的就是set方法中唯一参数的类型

get方法的定义是: 方法参数个数为0个,并且 (方法名字以"get"开头 或者 方法名字以"is"开头并且方法的返回类型为boolean)

set方法的定义是:方法参数个数为1个,并且 (方法名字以"set"开头并且方法返回类型为void)

所以,Spring在通过byName的自动填充属性时流程是:

  1. 找到所有set方法所对应的XXX部分的名字
  2. 根据XXX部分的名字去获取bean
  3. 取到bean,作为属性进行赋值
  4. 添加依赖关系

byType

源码如下

protected void autowireByType(
			String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) {
		//类型转化器
		TypeConverter converter = getCustomTypeConverter();
		if (converter == null) {
			converter = bw;
		}

		Set<String> autowiredBeanNames = new LinkedHashSet<>(4);
		//找到对应set方法的属性 ,这里propertyName是指set方法名
		String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw);
		for (String propertyName : propertyNames) {
			try {
				//拿到get,set方法
				PropertyDescriptor pd = bw.getPropertyDescriptor(propertyName);
				// Don't try autowiring by type for type Object: never makes sense,
				// even if it technically is a unsatisfied, non-simple property.
				if (Object.class != pd.getPropertyType()) {//排除Object类型
					//set方法发的参数信息
					MethodParameter methodParam = BeanUtils.getWriteMethodParameter(pd);
					// Do not allow eager init for type matching in case of a prioritized post-processor.
					//是否实现了PriorityOrdered接口
					boolean eager = !PriorityOrdered.class.isInstance(bw.getWrappedInstance());
					//根据上述参数信息获取依赖描述DependencyDescriptor,取到参数的类型
					DependencyDescriptor desc = new AutowireByTypeDependencyDescriptor(methodParam, eager);
					//根据类型找bean,这就是ByType
					Object autowiredArgument = resolveDependency(desc, beanName, autowiredBeanNames, converter);
					if (autowiredArgument != null) {
						pvs.add(propertyName, autowiredArgument);
					}
					for (String autowiredBeanName : autowiredBeanNames) {
						registerDependentBean(autowiredBeanName, beanName);
						if (logger.isTraceEnabled()) {
							logger.trace("Autowiring by type from bean name '" + beanName + "' via property '" +
									propertyName + "' to bean named '" + autowiredBeanName + "'");
						}
					}
					autowiredBeanNames.clear();
				}
			}
			catch (BeansException ex) {
				throw new UnsatisfiedDependencyException(mbd.getResourceDescription(), beanName, propertyName, ex);
			}
		}
	}

resolveDependency的源码后续再看

Spring在通过byType的自动填充属性时流程是:

  1. 获取到set方法中的唯一参数的参数类型,并且根据该类型去容器中获取bean
  2. 如果找到多个,会报错。

以上,分析了autowire的byType和byName情况,那么接下来分析constructor,constructor表示通过构造方法注入,其实这种情况就比较简单了,没有byType和byName那么复杂。

如果是constructor,那么就可以不写set方法了,当某个bean是通过构造方法来注入时,spring利用构造方法的参数信息从Spring容器中去找bean,找到bean之后作为参数传给构造方法,从而实例化得到一个bean对象,并完成属性赋值(属性赋值的代码得程序员来写)。

我们这里先不考虑一个类有多个构造方法的情况,后面单独讲推断构造方法。我们这里只考虑只有一个有参构造方法。

其实构造方法注入相当于byType+byName,普通的byType是根据set方法中的参数类型去找bean,找到多个会报错,而constructor就是通过构造方法中的参数类型去找bean,如果找到多个会根据参数名确定。

另外两个:

  1. no,表示关闭autowire
  2. default,表示默认值,我们一直演示的某个bean的autowire,而也可以直接在标签中设置autowire,如果设置了,那么标签中设置的autowire如果为default,那么则会用标签中设置的autowire。

可以发现XML中的自动注入是挺强大的,那么问题来了,为什么我们平时都是用的@Autowired注解呢?而没有用上文说的这种自动注入方式呢?

@Autowired注解相当于XML中的autowire属性的注解方式的替代。这是在官网上有提到的。

Essentially, the @Autowired annotation provides the same capabilities as described in Autowiring Collaborators but with more fine-grained control and wider applicability

翻译一下: 从本质上讲,@Autowired注解提供了与autowire相同的功能,但是拥有更细粒度的控制和更广泛的适用性。

注意:更细粒度的控制

XML中的autowire控制的是整个bean的所有属性,而@Autowired注解是直接写在某个属性、某个set方法、某个构造方法上的。

再举个例子,如果一个类有多个构造方法,那么如果用XML的autowire=constructor,你无法控制到底用哪个构造方法,而你可以用@Autowired注解来直接指定你想用哪个构造方法。

同时,用@Autowired注解,还可以控制,哪些属性想被自动注入,哪些属性不想,这也是细粒度的控制。

但是@Autowired无法区分byType和byName,@Autowired是先byType,如果找到多个则byName。

那么XML的自动注入底层其实也就是:

  1. set方法注入
  2. 构造方法注入

@Autowired注解对象的自动注入

上文说了@Autowired注解,是byType和byName的结合。

@Autowired注解可以写在:

  1. 属性上:先根据属性类型去找Bean,如果找到多个再根据属性名确定一个
  2. 构造方法上:先根据方法参数类型去找Bean,如果找到多个再根据参数名确定一个
  3. set方法上:先根据方法参数类型去找Bean,如果找到多个再根据参数名确定一个

而这种底层到了:

  1. 属性注入
  2. set方法注入
  3. 构造方法注入

@Autowired注入

源码如下

//执行完spring的自动注入以后,开始解析@autowire,这里叫做实例化回调
//如果在前面的流程中已经给属性赋值过了,那么这里不在赋值
boolean hasInstAwareBpps = hasInstantiationAwareBeanPostProcessors();
boolean needsDepCheck = (mbd.getDependencyCheck() != AbstractBeanDefinition.DEPENDENCY_CHECK_NONE);
//解析@autowire,PropertyDescriptor是属性描述器
PropertyDescriptor[] filteredPds = null;
if (hasInstAwareBpps) {
	if (pvs == null) {
		pvs = mbd.getPropertyValues();
	}
	for (BeanPostProcessor bp : getBeanPostProcessors()) {
		if (bp instanceof InstantiationAwareBeanPostProcessor) {
			InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
			//调用BeanPostProcessor解析@autowire,@value,@resource等注解,得到属性值
			//@autowire由AutowiredAnnotationBeanPostProcessor解析
			PropertyValues pvsToUse = ibp.postProcessProperties(pvs, bw.getWrappedInstance(), beanName);
			if (pvsToUse == null) {
				if (filteredPds == null) {
					filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching);
				}
				pvsToUse = ibp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName);
				if (pvsToUse == null) {
					return;
				}
			}
			pvs = pvsToUse;
		}
	}
}

AutowiredAnnotationBeanPostProcessor.postProcessProperties(PropertyValues pvs, Object bean, String beanName)源码如下

@Override
public PropertyValues postProcessProperties(PropertyValues pvs, Object bean, String beanName) {
	//InjectionMetadata中保存了所有被@autowire注解标注的属性/方法,并封装成InjectedElement集合,存入injectionMetadataCache
	InjectionMetadata metadata = findAutowiringMetadata(beanName, bean.getClass(), pvs);
	try {
		//按注入点进行注入
		metadata.inject(bean, beanName, pvs);
	}
	catch (BeanCreationException ex) {
		throw ex;
	}
	catch (Throwable ex) {
		throw new BeanCreationException(beanName, "Injection of autowired dependencies failed", ex);
	}
	return pvs;
}

寻找注入点

findAutowiringMetadata源码如下

private InjectionMetadata findAutowiringMetadata(String beanName, Class<?> clazz, @Nullable PropertyValues pvs) {
	// Fall back to class name as cache key, for backwards compatibility with custom callers.
	String cacheKey = (StringUtils.hasLength(beanName) ? beanName : clazz.getName());
	// Quick check on the concurrent map first, with minimal locking.
	InjectionMetadata metadata = this.injectionMetadataCache.get(cacheKey);
	if (InjectionMetadata.needsRefresh(metadata, clazz)) {
		synchronized (this.injectionMetadataCache) {
			metadata = this.injectionMetadataCache.get(cacheKey);
			if (InjectionMetadata.needsRefresh(metadata, clazz)) {
				if (metadata != null) {
					metadata.clear(pvs);
				}
				//解析注入点并缓存,注入点就是加了Autowire注解的属性或方法
				metadata = buildAutowiringMetadata(clazz);
				this.injectionMetadataCache.put(cacheKey, metadata);
			}
		}
	}
	return metadata;
}

buildAutowiringMetadata(clazz)源码如下

private InjectionMetadata buildAutowiringMetadata(final Class<?> clazz) {
	List<InjectionMetadata.InjectedElement> elements = new ArrayList<>();
	Class<?> targetClass = clazz;

	//外层do while循环
	do {
		final List<InjectionMetadata.InjectedElement> currElements = new ArrayList<>();

		//遍历targetClass所有Field,执行Lambda 表达式
		ReflectionUtils.doWithLocalFields(targetClass, field -> {
			//判断field上是否存在@Autowired,@value,@Inject注解
			AnnotationAttributes ann = findAutowiredAnnotation(field);
			if (ann != null) {
				//静态属性不会作为注入点
				if (Modifier.isStatic(field.getModifiers())) {
					if (logger.isInfoEnabled()) {
						logger.info("Autowired annotation is not supported on static fields: " + field);
					}
					return;
				}
				//构造注入点,加入集合中currElements
				boolean required = determineRequiredStatus(ann);
				currElements.add(new AutowiredFieldElement(field, required));
			}
		});
		//遍历targetClass所有Method,执行Lambda 表达式
		ReflectionUtils.doWithLocalMethods(targetClass, method -> {
			//判断是否是桥接方法,桥接:实现了父类的set方法
			Method bridgedMethod = BridgeMethodResolver.findBridgedMethod(method);
			if (!BridgeMethodResolver.isVisibilityBridgeMethodPair(method, bridgedMethod)) {
				return;
			}
			//判断Method上是否存在@Autowired,@value,@Inject注解
			AnnotationAttributes ann = findAutowiredAnnotation(bridgedMethod);
			if (ann != null && method.equals(ClassUtils.getMostSpecificMethod(method, clazz))) {
				//静态method不会作为注入点
				if (Modifier.isStatic(method.getModifiers())) {
					if (logger.isInfoEnabled()) {
						logger.info("Autowired annotation is not supported on static methods: " + method);
					}
					return;
				}
				//set方法最好有参数
				if (method.getParameterCount() == 0) {
					if (logger.isInfoEnabled()) {
						logger.info("Autowired annotation should only be used on methods with parameters: " +
								method);
					}
				}
				//构造注入点,加入集合中currElements
				boolean required = determineRequiredStatus(ann);
				PropertyDescriptor pd = BeanUtils.findPropertyForMethod(bridgedMethod, clazz);
				currElements.add(new AutowiredMethodElement(method, required, pd));
			}
		});
		//将currElements加入elements集合中,最后返回
		elements.addAll(0, currElements);
		//看看targetClass的父类是否存在,若存在,继续遍历父类
		targetClass = targetClass.getSuperclass();
	}
	while (targetClass != null && targetClass != Object.class);

	return new InjectionMetadata(clazz, elements);
}

findAutowiredAnnotation()方法源码

@Nullable
private AnnotationAttributes findAutowiredAnnotation(AccessibleObject ao) {
	if (ao.getAnnotations().length > 0) {  // autowiring annotations have to be local
		for (Class<? extends Annotation> type : this.autowiredAnnotationTypes) {
			AnnotationAttributes attributes = AnnotatedElementUtils.getMergedAnnotationAttributes(ao, type);
			if (attributes != null) {
				return attributes;
			}
		}
	}
	return null;
}

this.autowiredAnnotationTypes

private final Set<Class<? extends Annotation>> autowiredAnnotationTypes = new LinkedHashSet<>(4);

autowiredAnnotationTypes在构造方法中预置了Autowired,Value和Inject注解

public AutowiredAnnotationBeanPostProcessor() {
	this.autowiredAnnotationTypes.add(Autowired.class);
	this.autowiredAnnotationTypes.add(Value.class);
	try {
		this.autowiredAnnotationTypes.add((Class<? extends Annotation>)
				ClassUtils.forName("javax.inject.Inject", AutowiredAnnotationBeanPostProcessor.class.getClassLoader()));
		logger.trace("JSR-330 'javax.inject.Inject' annotation found and supported for autowiring");
	}
	catch (ClassNotFoundException ex) {
		// JSR-330 API not available - simply skip.
	}
}

寻找注入点总结

在创建一个Bean的过程中,Spring会利用AutowiredAnnotationBeanPostProcessor的postProcessMergedBeanDefinition()找出注入点并缓存,找注入点的流程为:

  1. 遍历当前类的所有的属性字段Field
  2. 查看字段上是否存在@Autowired、@Value、@Inject中的其中任意一个,存在则认为该字段是一个注入点
  3. 如果字段是static的,则不进行注入
  4. 获取@Autowired中的required属性的值
  5. 将字段信息构造成一个AutowiredFieldElement对象,作为一个注入点对象添加到currElements集合中。
  6. 遍历当前类的所有方法Method
  7. 判断当前Method是否是桥接方法,如果是找到原方法
  8. 查看方法上是否存在@Autowired、@Value、@Inject中的其中任意一个,存在则认为该方法是一个注入点
  9. 如果方法是static的,则不进行注入
  10. 获取@Autowired中的required属性的值
  11. 将方法信息构造成一个AutowiredMethodElement对象,作为一个注入点对象添加到currElements集合中。
  12. 遍历完当前类的字段和方法后,将遍历父类的,直到没有父类。
  13. 最后将currElements集合封装成一个InjectionMetadata对象,作为当前Bean对于的注入点集合对象,并缓存。

静态字段或方法为什么不支持

@Component
@Scope("prototype")
public class OrderService {


}
@Component
@Scope("prototype")
public class UserService  {

	@Autowired
	private static OrderService orderService;

	public void test() {
		System.out.println("test123");
	}

}

看上面代码,UserService和OrderService都是原型Bean,假设Spring支持static字段进行自动注入,那么现在调用两次

  1. UserService userService1 = context.getBean("userService")
  2. UserService userService2 = context.getBean("userService")

问此时,userService1的orderService值是什么?还是它自己注入的值吗?

答案是不是,一旦userService2 创建好了之后,static orderService字段的值就发生了修改了,从而出现bug。

桥接方法

public interface UserInterface<T> {
	void setOrderService(T t);
}
@Component
public class UserService implements UserInterface<OrderService> {

	private OrderService orderService;

	@Override
	@Autowired
	public void setOrderService(OrderService orderService) {
		this.orderService = orderService;
	}

	public void test() {
		System.out.println("test123");
	}

}

UserService对应的字节码为:

// class version 52.0 (52)
// access flags 0x21
// signature Ljava/lang/Object;Lcom/zhouyu/service/UserInterface<Lcom/zhouyu/service/OrderService;>;
// declaration: com/zhouyu/service/UserService implements com.zhouyu.service.UserInterface<com.zhouyu.service.OrderService>
public class com/zhouyu/service/UserService implements com/zhouyu/service/UserInterface {

  // compiled from: UserService.java

  @Lorg/springframework/stereotype/Component;()

  // access flags 0x2
  private Lcom/zhouyu/service/OrderService; orderService

  // access flags 0x1
  public <init>()V
   L0
    LINENUMBER 12 L0
    ALOAD 0
    INVOKESPECIAL java/lang/Object.<init> ()V
    RETURN
   L1
    LOCALVARIABLE this Lcom/zhouyu/service/UserService; L0 L1 0
    MAXSTACK = 1
    MAXLOCALS = 1

  // access flags 0x1
  public setOrderService(Lcom/zhouyu/service/OrderService;)V
  @Lorg/springframework/beans/factory/annotation/Autowired;()
   L0
    LINENUMBER 19 L0
    ALOAD 0
    ALOAD 1
    PUTFIELD com/zhouyu/service/UserService.orderService : Lcom/zhouyu/service/OrderService;
   L1
    LINENUMBER 20 L1
    RETURN
   L2
    LOCALVARIABLE this Lcom/zhouyu/service/UserService; L0 L2 0
    LOCALVARIABLE orderService Lcom/zhouyu/service/OrderService; L0 L2 1
    MAXSTACK = 2
    MAXLOCALS = 2

  // access flags 0x1
  public test()V
   L0
    LINENUMBER 23 L0
    GETSTATIC java/lang/System.out : Ljava/io/PrintStream;
    LDC "test123"
    INVOKEVIRTUAL java/io/PrintStream.println (Ljava/lang/String;)V
   L1
    LINENUMBER 24 L1
    RETURN
   L2
    LOCALVARIABLE this Lcom/zhouyu/service/UserService; L0 L2 0
    MAXSTACK = 2
    MAXLOCALS = 1

  // access flags 0x1041
  public synthetic bridge setOrderService(Ljava/lang/Object;)V
  @Lorg/springframework/beans/factory/annotation/Autowired;()
   L0
    LINENUMBER 11 L0
    ALOAD 0
    ALOAD 1
    CHECKCAST com/zhouyu/service/OrderService
    INVOKEVIRTUAL com/zhouyu/service/UserService.setOrderService (Lcom/zhouyu/service/OrderService;)V
    RETURN
   L1
    LOCALVARIABLE this Lcom/zhouyu/service/UserService; L0 L1 0
    MAXSTACK = 2
    MAXLOCALS = 2
}

可以看到在UserSerivce的字节码中有两个setOrderService方法:

  1. public setOrderService(Lcom/zhouyu/service/OrderService;)V
  2. public synthetic bridge setOrderService(Ljava/lang/Object;)V

并且都是存在@Autowired注解的。

所以在Spring中需要处理这种情况,当遍历到桥接方法时,得找到原方法。

注入点进行注入

Spring在AutowiredAnnotationBeanPostProcessor的postProcessProperties()方法中,会遍历所找到的注入点依次进行注入。

源码如下

@Override
public PropertyValues postProcessProperties(PropertyValues pvs, Object bean, String beanName) {
	//InjectionMetadata中保存了所有被@autowire注解标注的属性/方法,并封装成InjectedElement集合,存入injectionMetadataCache
	InjectionMetadata metadata = findAutowiringMetadata(beanName, bean.getClass(), pvs);
	try {
		//按注入点进行注入
		metadata.inject(bean, beanName, pvs);
	}
	catch (BeanCreationException ex) {
		throw ex;
	}
	catch (Throwable ex) {
		throw new BeanCreationException(beanName, "Injection of autowired dependencies failed", ex);
	}
	return pvs;
}

metadata.inject(bean, beanName, pvs)源码如下

public void inject(Object target, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable {
	Collection<InjectedElement> checkedElements = this.checkedElements;
	Collection<InjectedElement> elementsToIterate =
			(checkedElements != null ? checkedElements : this.injectedElements);
	if (!elementsToIterate.isEmpty()) {
		//遍历所有找到的InjectedElement,进行依赖注入
		for (InjectedElement element : elementsToIterate) {
			if (logger.isTraceEnabled()) {
				logger.trace("Processing injected element of bean '" + beanName + "': " + element);
			}
			element.inject(target, beanName, pvs);
		}
	}
}

@Autowire注解标记的依赖注入在实现类中AutowiredFieldElement和AutowiredMethodElement查看,源码如下

字段注入

对@Autowire注解标记的Field进行依赖注入,源码如下

@Override
protected void inject(Object bean, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable {
	Field field = (Field) this.member;
	Object value;
	if (this.cached) {
		value = resolvedCachedArgument(beanName, this.cachedFieldValue);
	}
	else {
		//把field,封装成依赖描述器DependencyDescriptor
		DependencyDescriptor desc = new DependencyDescriptor(field, this.required);
		desc.setContainingClass(bean.getClass());
		Set<String> autowiredBeanNames = new LinkedHashSet<>(1);
		Assert.state(beanFactory != null, "No BeanFactory available");
		TypeConverter typeConverter = beanFactory.getTypeConverter();
		try {
			//从beanFactory查找到匹配的对象,进行依赖注入
			value = beanFactory.resolveDependency(desc, beanName, autowiredBeanNames, typeConverter);
		}
		catch (BeansException ex) {
			throw new UnsatisfiedDependencyException(null, beanName, new InjectionPoint(field), ex);
		}
		synchronized (this) {
			if (!this.cached) {
				if (value != null || this.required) {
					this.cachedFieldValue = desc;
					//注册依赖关系
					registerDependentBeans(beanName, autowiredBeanNames);
					if (autowiredBeanNames.size() == 1) {
						String autowiredBeanName = autowiredBeanNames.iterator().next();
						if (beanFactory.containsBean(autowiredBeanName) &&
								beanFactory.isTypeMatch(autowiredBeanName, field.getType())) {
							this.cachedFieldValue = new ShortcutDependencyDescriptor(
									desc, autowiredBeanName, field.getType());
						}
					}
				}
				else {
					this.cachedFieldValue = null;
				}
				this.cached = true;
			}
		}
	}
	//调用反射对Field字段进行赋值
	if (value != null) {
		//field.setAccessible(true);
		ReflectionUtils.makeAccessible(field);
		field.set(bean, value);
	}
}
}
字段注入总结
  1. 遍历所有的AutowiredFieldElement对象。
  2. 将对应的字段封装为DependencyDescriptor对象
  3. 调用BeanFactory的resolveDependency()方法,传入DependencyDescriptor对象,进行依赖查找,找到当前字段所匹配的Bean对象。
  4. DependencyDescriptor对象和所找到的结果对象beanName封装成一个ShortcutDependencyDescriptor对象作为缓存,比如如果当前Bean是原型Bean,那么下次再来创建该Bean时,就可以直接拿缓存的结果对象beanName去BeanFactory中去那bean对象了,不用再次进行查找了
  5. 利用反射将结果对象赋值给字段。

Set方法注入

对@Autowire注解标记的Method进行依赖注入,源码如下

@Override
protected void inject(Object bean, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable {
	if (checkPropertySkipping(pvs)) {
		return;
	}
	Method method = (Method) this.member;
	Object[] arguments;
	if (this.cached) {
		// Shortcut for avoiding synchronization...
		arguments = resolveCachedArguments(beanName);
	}
	else {
		Class<?>[] paramTypes = method.getParameterTypes();
		arguments = new Object[paramTypes.length];
		//将method的arguments解析成DependencyDescriptor[]
		DependencyDescriptor[] descriptors = new DependencyDescriptor[paramTypes.length];
		Set<String> autowiredBeans = new LinkedHashSet<>(paramTypes.length);
		Assert.state(beanFactory != null, "No BeanFactory available");
		TypeConverter typeConverter = beanFactory.getTypeConverter();
		//这里遍历所有arguments参数
		for (int i = 0; i < arguments.length; i++) {
			//方法的每个参数再构成DependencyDescriptor
			MethodParameter methodParam = new MethodParameter(method, i);
			DependencyDescriptor currDesc = new DependencyDescriptor(methodParam, this.required);
			currDesc.setContainingClass(bean.getClass());
			descriptors[i] = currDesc;
			try {
				//和field一样,从beanFactory取得对象
				Object arg = beanFactory.resolveDependency(currDesc, beanName, autowiredBeans, typeConverter);
				if (arg == null && !this.required) {
					arguments = null;
					break;
				}
				arguments[i] = arg;
			}
			catch (BeansException ex) {
				throw new UnsatisfiedDependencyException(null, beanName, new InjectionPoint(methodParam), ex);
			}
		}
		synchronized (this) {
			if (!this.cached) {
				if (arguments != null) {
					Object[] cachedMethodArguments = new Object[paramTypes.length];
					System.arraycopy(descriptors, 0, cachedMethodArguments, 0, arguments.length);
					//注册依赖关系
					registerDependentBeans(beanName, autowiredBeans);
					if (autowiredBeans.size() == paramTypes.length) {
						Iterator<String> it = autowiredBeans.iterator();
						for (int i = 0; i < paramTypes.length; i++) {
							String autowiredBeanName = it.next();
							if (beanFactory.containsBean(autowiredBeanName) &&
									beanFactory.isTypeMatch(autowiredBeanName, paramTypes[i])) {
								cachedMethodArguments[i] = new ShortcutDependencyDescriptor(
										descriptors[i], autowiredBeanName, paramTypes[i]);
							}
						}
					}
					this.cachedMethodArguments = cachedMethodArguments;
				}
				else {
					this.cachedMethodArguments = null;
				}
				this.cached = true;
			}
		}
	}
	if (arguments != null) {
		try {
			//method.setAccessible(true);
			ReflectionUtils.makeAccessible(method);
			//使用反射调用方式进行依赖注入
			method.invoke(bean, arguments);
		}
		catch (InvocationTargetException ex) {
			throw ex.getTargetException();
		}
	}
}
Set方法注入总结
  1. 遍历所有的AutowiredMethodElement对象
  2. 遍历将对应的方法的参数,将每个参数封装成MethodParameter对象
  3. MethodParameter对象封装为DependencyDescriptor对象
  4. 调用BeanFactory的resolveDependency()方法,传入DependencyDescriptor对象,进行依赖查找,找到当前方法参数所匹配的Bean对象。
  5. DependencyDescriptor对象和所找到的结果对象beanName封装成一个ShortcutDependencyDescriptor对象作为缓存,比如如果当前Bean是原型Bean,那么下次再来创建该Bean时,就可以直接拿缓存的结果对象beanName去BeanFactory中去那bean对象了,不用再次进行查找了
  6. 利用反射将找到的所有结果对象传给当前方法,并执行。

核心方法解析

上面我们讲了Spring中的自动注入(byName,byType)和@Autowired注解的工作原理以及源码分析,

我们来分析还没讲完的,剩下的核心的方法:

@Nullable
Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
      @Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException;

该方法表示,传入一个依赖描述(DependencyDescriptor),该方法会根据该依赖描述从BeanFactory中找出对应的唯一的一个Bean对象。

下面来分析一下DefaultListableBeanFactoryresolveDependency()方法的具体实现,源码如下

@Override
@Nullable
public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
		@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {

	descriptor.initParameterNameDiscovery(getParameterNameDiscoverer());
	if (Optional.class == descriptor.getDependencyType()) {
		return createOptionalDependency(descriptor, requestingBeanName);
	}
	else if (ObjectFactory.class == descriptor.getDependencyType() ||
			ObjectProvider.class == descriptor.getDependencyType()) {
		return new DependencyObjectProvider(descriptor, requestingBeanName);
	}
	else if (javaxInjectProviderClass == descriptor.getDependencyType()) {
		return new Jsr330Factory().createDependencyProvider(descriptor, requestingBeanName);
	}
	else {
		Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary(
				descriptor, requestingBeanName);
		if (result == null) {
			result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);
		}
		return result;
	}
}

稍微总结一下

  • 类型是Optional的特殊处理(不重要)
  • 依赖上有@lazy注解的特殊处理,会生成一个代理对象,直接return,然后在调用该属性时才会调用doResolveDependency(不重要)
  • ObjectFactory类型的对象,直接在getObject()时返回

下面主要看最后一个else的doResolveDependency源码

@Nullable
public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName,
		@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {

	InjectionPoint previousInjectionPoint = ConstructorResolver.setCurrentInjectionPoint(descriptor);
	try {
		Object shortcut = descriptor.resolveShortcut(this);
		if (shortcut != null) {
			return shortcut;
		}

		Class<?> type = descriptor.getDependencyType();
		Object value = getAutowireCandidateResolver().getSuggestedValue(descriptor);
		if (value != null) {
			if (value instanceof String) {
				String strVal = resolveEmbeddedValue((String) value);
				BeanDefinition bd = (beanName != null && containsBean(beanName) ?
						getMergedBeanDefinition(beanName) : null);
				value = evaluateBeanDefinitionString(strVal, bd);
			}
			TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());
			try {
				return converter.convertIfNecessary(value, type, descriptor.getTypeDescriptor());
			}
			catch (UnsupportedOperationException ex) {
				// A custom TypeConverter which does not support TypeDescriptor resolution...
				return (descriptor.getField() != null ?
						converter.convertIfNecessary(value, type, descriptor.getField()) :
						converter.convertIfNecessary(value, type, descriptor.getMethodParameter()));
			}
		}
		//判断descriptor类型,将其他类型转成map或object(map的value)
		Object multipleBeans = resolveMultipleBeans(descriptor, beanName, autowiredBeanNames, typeConverter);
		if (multipleBeans != null) {
			return multipleBeans;
		}

		Map<String, Object> matchingBeans = findAutowireCandidates(beanName, type, descriptor);
		if (matchingBeans.isEmpty()) {
			if (isRequired(descriptor)) {
				raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);
			}
			return null;
		}

		String autowiredBeanName;
		Object instanceCandidate;

		if (matchingBeans.size() > 1) {
			autowiredBeanName = determineAutowireCandidate(matchingBeans, descriptor);
			if (autowiredBeanName == null) {
				if (isRequired(descriptor) || !indicatesMultipleBeans(type)) {
					return descriptor.resolveNotUnique(descriptor.getResolvableType(), matchingBeans);
				}
				else {
					// In case of an optional Collection/Map, silently ignore a non-unique case:
					// possibly it was meant to be an empty collection of multiple regular beans
					// (before 4.3 in particular when we didn't even look for collection beans).
					return null;
				}
			}
			instanceCandidate = matchingBeans.get(autowiredBeanName);
		}
		else {
			// We have exactly one match.
			Map.Entry<String, Object> entry = matchingBeans.entrySet().iterator().next();
			autowiredBeanName = entry.getKey();
			instanceCandidate = entry.getValue();
		}

		if (autowiredBeanNames != null) {
			autowiredBeanNames.add(autowiredBeanName);
		}
		if (instanceCandidate instanceof Class) {
			instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this);
		}
		Object result = instanceCandidate;
		if (result instanceof NullBean) {
			if (isRequired(descriptor)) {
				raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);
			}
			result = null;
		}
		if (!ClassUtils.isAssignableValue(type, result)) {
			throw new BeanNotOfRequiredTypeException(autowiredBeanName, type, instanceCandidate.getClass());
		}
		return result;
	}
	finally {
		ConstructorResolver.setCurrentInjectionPoint(previousInjectionPoint);
	}
}
@value注解

源码如下

DependencyDescriptor desc = new DependencyDescriptor(field, this.required);
desc.setContainingClass(bean.getClass());
Set<String> autowiredBeanNames = new LinkedHashSet<>(1);
Assert.state(beanFactory != null, "No BeanFactory available");
TypeConverter typeConverter = beanFactory.getTypeConverter();
try {
	value = beanFactory.resolveDependency(desc, beanName, autowiredBeanNames, typeConverter);
}
catch (BeansException ex) {
	throw new UnsatisfiedDependencyException(null, beanName, new InjectionPoint(field), ex);
}

具体解析细节有时间再仔细研究吧

resolveMultipleBeans源码如下

@Nullable
private Object resolveMultipleBeans(DependencyDescriptor descriptor, @Nullable String beanName,
		@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) {

	Class<?> type = descriptor.getDependencyType();

	if (descriptor instanceof StreamDependencyDescriptor) {
		Map<String, Object> matchingBeans = findAutowireCandidates(beanName, type, descriptor);
		if (autowiredBeanNames != null) {
			autowiredBeanNames.addAll(matchingBeans.keySet());
		}
		Stream<Object> stream = matchingBeans.keySet().stream()
				.map(name -> descriptor.resolveCandidate(name, type, this))
				.filter(bean -> !(bean instanceof NullBean));
		if (((StreamDependencyDescriptor) descriptor).isOrdered()) {
			stream = stream.sorted(adaptOrderComparator(matchingBeans));
		}
		return stream;
	}
	else if (type.isArray()) {
		Class<?> componentType = type.getComponentType();
		ResolvableType resolvableType = descriptor.getResolvableType();
		Class<?> resolvedArrayType = resolvableType.resolve(type);
		if (resolvedArrayType != type) {
			componentType = resolvableType.getComponentType().resolve();
		}
		if (componentType == null) {
			return null;
		}
		Map<String, Object> matchingBeans = findAutowireCandidates(beanName, componentType,
				new MultiElementDescriptor(descriptor));
		if (matchingBeans.isEmpty()) {
			return null;
		}
		if (autowiredBeanNames != null) {
			autowiredBeanNames.addAll(matchingBeans.keySet());
		}
		TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());
		Object result = converter.convertIfNecessary(matchingBeans.values(), resolvedArrayType);
		if (result instanceof Object[]) {
			Comparator<Object> comparator = adaptDependencyComparator(matchingBeans);
			if (comparator != null) {
				Arrays.sort((Object[]) result, comparator);
			}
		}
		return result;
	}
	else if (Collection.class.isAssignableFrom(type) && type.isInterface()) {
		Class<?> elementType = descriptor.getResolvableType().asCollection().resolveGeneric();
		if (elementType == null) {
			return null;
		}
		Map<String, Object> matchingBeans = findAutowireCandidates(beanName, elementType,
				new MultiElementDescriptor(descriptor));
		if (matchingBeans.isEmpty()) {
			return null;
		}
		if (autowiredBeanNames != null) {
			autowiredBeanNames.addAll(matchingBeans.keySet());
		}
		TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());
		Object result = converter.convertIfNecessary(matchingBeans.values(), type);
		if (result instanceof List) {
			if (((List<?>) result).size() > 1) {
				Comparator<Object> comparator = adaptDependencyComparator(matchingBeans);
				if (comparator != null) {
					((List<?>) result).sort(comparator);
				}
			}
		}
		return result;
	}
	else if (Map.class == type) {
		ResolvableType mapType = descriptor.getResolvableType().asMap();
		Class<?> keyType = mapType.resolveGeneric(0);
		if (String.class != keyType) {
			return null;
		}
		Class<?> valueType = mapType.resolveGeneric(1);
		if (valueType == null) {
			return null;
		}
		Map<String, Object> matchingBeans = findAutowireCandidates(beanName, valueType,
				new MultiElementDescriptor(descriptor));
		if (matchingBeans.isEmpty()) {
			return null;
		}
		if (autowiredBeanNames != null) {
			autowiredBeanNames.addAll(matchingBeans.keySet());
		}
		return matchingBeans;
	}
	else {
		return null;
	}
}

稍微总结一下

  • 判断是否存在@value注解,如果存在,解析该注解并返回
  • 判断descriptor类型,将其他类型转成map或object(map的value)
  • findAutowireCandidates()返回一个map,key是beanName,value是对象(可能是bean,也可能是未加载的beanclass)

具体流程图https://www.processon.com/view/link/5f8d3c895653bb06ef076688

findAutowireCandidates()

源码如下

protected Map<String, Object> findAutowireCandidates(
		@Nullable String beanName, Class<?> requiredType, DependencyDescriptor descriptor) {

	String[] candidateNames = BeanFactoryUtils.beanNamesForTypeIncludingAncestors(
			this, requiredType, true, descriptor.isEager());
	Map<String, Object> result = new LinkedHashMap<>(candidateNames.length);
	for (Map.Entry<Class<?>, Object> classObjectEntry : this.resolvableDependencies.entrySet()) {
		Class<?> autowiringType = classObjectEntry.getKey();
		if (autowiringType.isAssignableFrom(requiredType)) {
			Object autowiringValue = classObjectEntry.getValue();
			autowiringValue = AutowireUtils.resolveAutowiringValue(autowiringValue, requiredType);
			if (requiredType.isInstance(autowiringValue)) {
				result.put(ObjectUtils.identityToString(autowiringValue), autowiringValue);
				break;
			}
		}
	}
	for (String candidate : candidateNames) {
		if (!isSelfReference(beanName, candidate) && isAutowireCandidate(candidate, descriptor)) {
			addCandidateEntry(result, candidate, descriptor, requiredType);
		}
	}
	if (result.isEmpty()) {
		boolean multiple = indicatesMultipleBeans(requiredType);
		// Consider fallback matches if the first pass failed to find anything...
		DependencyDescriptor fallbackDescriptor = descriptor.forFallbackMatch();
		for (String candidate : candidateNames) {
			if (!isSelfReference(beanName, candidate) && isAutowireCandidate(candidate, fallbackDescriptor) &&
					(!multiple || getAutowireCandidateResolver().hasQualifier(descriptor))) {
				addCandidateEntry(result, candidate, descriptor, requiredType);
			}
		}
		if (result.isEmpty() && !multiple) {
			// Consider self references as a final pass...
			// but in the case of a dependency collection, not the very same bean itself.
			for (String candidate : candidateNames) {
				if (isSelfReference(beanName, candidate) &&
						(!(descriptor instanceof MultiElementDescriptor) || !beanName.equals(candidate)) &&
						isAutowireCandidate(candidate, fallbackDescriptor)) {
					addCandidateEntry(result, candidate, descriptor, requiredType);
				}
			}
		}
	}
	return result;
}

根据类型找beanName的底层流程https://www.processon.com/view/link/6135bb430e3e7412ecd5d1f2

对应执行流程图为https://www.processon.com/view/link/5f8fdfa8e401fd06fd984f20

  1. 找出BeanFactory中类型为type的所有的Bean的名字,注意是名字,而不是Bean对象,因为我们可以根据BeanDefinition就能判断和当前type是不是匹配,不用生成Bean对象
  2. 把resolvableDependencies中key为type的对象找出来并添加到result中
  3. 遍历根据type找出的beanName,判断当前beanName对应的Bean是不是能够被自动注入
  4. 先判断beanName对应的BeanDefinition中的autowireCandidate属性,如果为false,表示不能用来进行自动注入,如果为true则继续进行判断
  5. 判断当前type是不是泛型,如果是泛型是会把容器中所有的beanName找出来的,如果是这种情况,那么在这一步中就要获取到泛型的真正类型,然后进行匹配,如果当前beanName和当前泛型对应的真实类型匹配,那么则继续判断
  6. 如果当前DependencyDescriptor上存在@Qualifier注解,那么则要判断当前beanName上是否定义了Qualifier,并且是否和当前DependencyDescriptor上的Qualifier相等,相等则匹配
  7. 经过上述验证之后,当前beanName才能成为一个可注入的,添加到result中

关于依赖注入中泛型注入的实现

首先在Java反射中,有一个Type接口,表示类型,具体分类为:

  1. raw types:也就是普通Class
  2. parameterized types:对应ParameterizedType接口,泛型类型
  3. array types:对应GenericArrayType,泛型数组
  4. type variables:对应TypeVariable接口,表示类型变量,也就是所定义的泛型,比如T、K
  5. primitive types:基本类型,int、boolean

大家可以好好看看下面代码所打印的结果:

public class TypeTest<T> {

	private int i;
	private Integer it;
	private int[] iarray;
	private List list;
	private List<String> slist;
	private List<T> tlist;
	private T t;
	private T[] tarray;

	public static void main(String[] args) throws NoSuchFieldException {

		test(TypeTest.class.getDeclaredField("i"));
		System.out.println("=======");
		test(TypeTest.class.getDeclaredField("it"));
		System.out.println("=======");
		test(TypeTest.class.getDeclaredField("iarray"));
		System.out.println("=======");
		test(TypeTest.class.getDeclaredField("list"));
		System.out.println("=======");
		test(TypeTest.class.getDeclaredField("slist"));
		System.out.println("=======");
		test(TypeTest.class.getDeclaredField("tlist"));
		System.out.println("=======");
		test(TypeTest.class.getDeclaredField("t"));
		System.out.println("=======");
		test(TypeTest.class.getDeclaredField("tarray"));

	}

	public static void test(Field field) {

		if (field.getType().isPrimitive()) {
			System.out.println(field.getName() + "是基本数据类型");
		} else {
			System.out.println(field.getName() + "不是基本数据类型");
		}

		if (field.getGenericType() instanceof ParameterizedType) {
			System.out.println(field.getName() + "是泛型类型");
		} else {
			System.out.println(field.getName() + "不是泛型类型");
		}

		if (field.getType().isArray()) {
			System.out.println(field.getName() + "是普通数组");
		} else {
			System.out.println(field.getName() + "不是普通数组");
		}

		if (field.getGenericType() instanceof GenericArrayType) {
			System.out.println(field.getName() + "是泛型数组");
		} else {
			System.out.println(field.getName() + "不是泛型数组");
		}

		if (field.getGenericType() instanceof TypeVariable) {
			System.out.println(field.getName() + "是泛型变量");
		} else {
			System.out.println(field.getName() + "不是泛型变量");
		}

	}

}

Spring中,但注入点是一个泛型时,也是会进行处理的,比如:

@Component
public class UserService extends BaseService<OrderService, StockService> {

	public void test() {
		System.out.println(o);
	}

}

public class BaseService<O, S> {

	@Autowired
	protected O o;

	@Autowired
	protected S s;
}
  1. Spring扫描时发现UserService是一个Bean
  2. 那就取出注入点,也就是BaseService中的两个属性o、s
  3. 接下来需要按注入点类型进行注入,但是o和s都是泛型,所以Spring需要确定o和s的具体类型。
  4. 因为当前正在创建的是UserService的Bean,所以可以通过userService.getClass().getGenericSuperclass().getTypeName()获取到具体的泛型信息,比如com.zhouyu.service.BaseService<com.zhouyu.service.OrderService, com.zhouyu.service.StockService>
  5. 然后再拿到UserService的父类BaseService的泛型变量:for (TypeVariable<? extends Class<?>> typeParameter : userService.getClass().getSuperclass().getTypeParameters()) { System._out_.println(typeParameter.getName()); }
  6. 通过上面两段代码,就能知道,o对应的具体就是OrderService,s对应的具体类型就是StockService
  7. 然后再调用oField.getGenericType()就知道当前field使用的是哪个泛型,就能知道具体类型了

@Qualifier

定义两个注解:

@Target({ElementType.TYPE, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier("random")
public @interface Random {
}
@Target({ElementType.TYPE, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier("roundRobin")
public @interface RoundRobin {
}

定义一个接口和两个实现类,表示负载均衡:

public interface LoadBalance {
	String select();
}
@Component
@Random
public class RandomStrategy implements LoadBalance {

	@Override
	public String select() {
		return null;
	}
}
@Component
@RoundRobin
public class RoundRobinStrategy implements LoadBalance {

	@Override
	public String select() {
		return null;
	}
}

使用:

@Component
public class UserService  {

	@Autowired
	@RoundRobin
	private LoadBalance loadBalance;

	public void test() {
		System.out.println(loadBalance);
	}

}

@Resource

@Resource注解是由 CommonAnnotationBeanPostProcessor 来解析的,源码有空再看吧

@Resource注解底层工作流程图:

image

posted on 2022-03-08 23:09  路仁甲  阅读(134)  评论(0编辑  收藏  举报