代码随想录算法训练营day35 | leetcode 860. 柠檬水找零、406. 根据身高重建队列、452. 用最少数量的箭引爆气球
题目链接:860. 柠檬水找零-简单
题目描述:
在柠檬水摊上,每一杯柠檬水的售价为 5
美元。顾客排队购买你的产品,(按账单 bills
支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5
美元、10
美元或 20
美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5
美元。
注意,一开始你手头没有任何零钱。
给你一个整数数组 bills
,其中 bills[i]
是第 i
位顾客付的账。如果你能给每位顾客正确找零,返回 true
,否则返回 false
。
示例 1:
输入:bills = [5,5,5,10,20]
输出:true
解释:
前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
由于所有客户都得到了正确的找零,所以我们输出 true。
示例 2:
输入:bills = [5,5,10,10,20]
输出:false
解释:
前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。
对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。
对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。
由于不是每位顾客都得到了正确的找零,所以答案是 false。
提示:
1 <= bills.length <= 10^5
bills[i]
不是5
就是10
或是20
因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!
所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。
代码如下:
// 时间复杂度: O(n)
// 空间复杂度: O(1)
class Solution {
public:
bool lemonadeChange(vector<int>& bills) {
int five = 0, ten = 0, twenty = 0;
for (int i = 0; i < bills.size(); ++i) {
if (bills[i] == 5)
++five;
if (bills[i] == 10) {
--five;
++ten;
}
if (bills[i] == 20) {
if (ten > 0) {
--five;
--ten;
} else
five -= 3;
}
if (five < 0 || ten < 0)
return false;
}
return true;
}
};
题目链接:406. 根据身高重建队列-中等
题目描述:
假设有打乱顺序的一群人站成一个队列,数组 people
表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki]
表示第 i
个人的身高为 hi
,前面 正好 有 ki
个身高大于或等于 hi
的人。
请你重新构造并返回输入数组 people
所表示的队列。返回的队列应该格式化为数组 queue
,其中 queue[j] = [hj, kj]
是队列中第 j
个人的属性(queue[0]
是排在队列前面的人)。
示例 1:
输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
解释:
编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。
示例 2:
输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]
提示:
1 <= people.length <= 2000
0 <= hi <= 10^6
0 <= ki < people.length
- 题目数据确保队列可以被重建
局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性
全局最优:最后都做完插入操作,整个队列满足题目队列属性
代码如下:
// 时间复杂度:O(nlogn + n^2)
// 空间复杂度:O(n)
class Solution {
static bool cmp(const vector<int>& a, const vector<int>& b) {
if (a[0] == b[0])
return a[1] < b[1];
return a[0] > b[0];
}
public:
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
sort(people.begin(), people.end(), cmp);
vector<vector<int>> queue;
for (int i = 0; i < people.size(); ++i) {
queue.insert(queue.begin() + people[i][1], people[i]);
}
return queue;
}
};
题目链接:452. 用最少数量的箭引爆气球-中等
题目描述:
有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points
,其中points[i] = [xstart, xend]
表示水平直径在 xstart
和 xend
之间的气球。你不知道气球的确切 y 坐标。
一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x
处射出一支箭,若有一个气球的直径的开始和结束坐标为 x``start
,x``end
, 且满足 xstart ≤ x ≤ x``end
,则该气球会被 引爆 。可以射出的弓箭的数量 没有限制 。 弓箭一旦被射出之后,可以无限地前进。
给你一个数组 points
,返回引爆所有气球所必须射出的 最小 弓箭数 。
示例 1:
输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:气球可以用2支箭来爆破:
-在x = 6处射出箭,击破气球[2,8]和[1,6]。
-在x = 11处发射箭,击破气球[10,16]和[7,12]。
示例 2:
输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4
解释:每个气球需要射出一支箭,总共需要4支箭。
示例 3:
输入:points = [[1,2],[2,3],[3,4],[4,5]]
输出:2
解释:气球可以用2支箭来爆破:
- 在x = 2处发射箭,击破气球[1,2]和[2,3]。
- 在x = 4处射出箭,击破气球[3,4]和[4,5]。
提示:
1 <= points.length <= 10^5
points[i].length == 2
-2^31 <= xstart < xend <= 2^31 - 1
先对数组进行从小到大排序,再对右边界进行判断,从而找出重复区间
代码如下:
// 时间复杂度:O(nlog n),因为有一个快排
// 空间复杂度:O(1),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间
class Solution {
static bool cmp(const vector<int>& a, const vector<int>& b) {
return a[0] < b[0];
}
public:
int findMinArrowShots(vector<vector<int>>& points) {
if (points.size() <= 1)
return points.size();
sort(points.begin(), points.end(), cmp);
int res = 1;
for (int i = 1; i < points.size(); ++i) {
if (points[i][0] > points[i - 1][1])
++res;
else
points[i][1] = min(points[i - 1][1], points[i][1]);
}
return res;
}
};