代码随想录算法训练营day31 | leetcode 455. 分发饼干、376. 摆动序列、53. 最大子数组和
贪心理论基础核心:
由局部推全局最优
题目链接:455. 分发饼干-简单
题目描述:
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i
,都有一个胃口值 g[i]
,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j
,都有一个尺寸 s[j]
。如果 s[j] >= g[i]
,我们可以将这个饼干 j
分配给孩子 i
,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
示例 2:
输入: g = [1,2], s = [1,2,3]
输出: 2
解释:
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.
提示:
1 <= g.length <= 3 * 10^4
0 <= s.length <= 3 * 10^4
1 <= g[i], s[j] <= 2^31 - 1
局部最优就是小胃口的吃小饼干的,充分利用小胃口消耗掉小的饼干,全局最优就是尽可能多地消耗掉小饼干。
代码如下:
// 时间复杂度: O(nlogn)
// 空间复杂度: O(1)
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int res = 0;
int j = 0;
for (int i = 0; i < s.size(); ++i) {
if (j < g.size() && g[j] <= s[i]) {
++res;
++j;
}
}
return res;
}
};
题目链接:376. 摆动序列-中等
题目描述:
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
- 例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。 - 相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums
,返回 nums
中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
示例 3:
输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2
提示:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
进阶:你能否用 O(n)
时间复杂度完成此题?
本题要考虑三种情况:
- 情况一:上下坡中有平坡
- 情况二:数组首尾两端
- 情况三:单调坡中有平坡
代码如下:
// 时间复杂度: O(n)
// 空间复杂度: O(1)
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() == 1)
return 1;
int res = 1;
int prediff = 0;
for (int i = 0; i < nums.size() - 1; ++i) {
int curdiff = nums[i + 1] - nums[i];
if ((prediff >= 0 && curdiff < 0) ||
(prediff <= 0 && curdiff > 0)) {
++res;
prediff = curdiff;
}
}
return res;
}
};
题目链接:53. 最大子数组和-中等
题目描述:
给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组
是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [5,4,-1,7,8]
输出:23
提示:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
进阶:如果你已经实现复杂度为 O(n)
的解法,尝试使用更为精妙的 分治法 求解。
思路:
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
局部最优的情况下,并记录最大的“连续和”,可以推出全局最优。
代码如下:
// 时间复杂度: O(n)
// 空间复杂度: O(1)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if(nums.size() == 1) return nums[0];
int res = INT_MIN;
int sum = 0;
for(int i = 0; i < nums.size(); ++i) {
sum += nums[i];
if(res < sum){
res = sum;
}
if(sum < 0) {
sum = 0;
}
}
return res;
}
};