pandas使用

 1 import pandas as pd
 2 
 3 #读取txt格式的表格文件
 4 pd.read_tables("***.txt",delim_whitespace=True)
 5 #delim_whitespace=True意思每个值用空格分开
 6 
 7 #读取csv格式的文件
 8 data = pd.read_csv("***.csv")
 9 data.head(2) #查看前两行
10 data.columns #查看全有栏目
11 data.index  #查看所有索引
12 data.loc[0]  #0是索引可以替换,意思查看索引为0的一行

 在读取log文件,用于生成文件名集合。

 1 >>> import pandas as pd
 2 >>> dates = pd.date_range(pd.to_datetime('2017-01-01'),pd.to_datetime('2018-04-0
 3 4'),freq='M')
 4 >>> type(dates)
 5 <class 'pandas.core.indexes.datetimes.DatetimeIndex'>
 6 >>> dates[:10]
 7 DatetimeIndex(['2017-01-31', '2017-02-28', '2017-03-31', '2017-04-30',
 8                '2017-05-31', '2017-06-30', '2017-07-31', '2017-08-31',
 9                '2017-09-30', '2017-10-31'],
10               dtype='datetime64[ns]', freq='M')
11 >>> for i in dates:
12 ...     print(i)
13 ...
14 2017-01-31 00:00:00
15 2017-02-28 00:00:00
16 2017-03-31 00:00:00
17 2017-04-30 00:00:00
18 2017-05-31 00:00:00
19 2017-06-30 00:00:00
20 2017-07-31 00:00:00
21 2017-08-31 00:00:00
22 2017-09-30 00:00:00
23 2017-10-31 00:00:00
24 2017-11-30 00:00:00
25 2017-12-31 00:00:00
26 2018-01-31 00:00:00
27 2018-02-28 00:00:00
28 2018-03-31 00:00:00
29 >>> dates = pd.date_range(pd.to_datetime('2017-01-01'),pd.to_datetime('2018-04-0
30 4'))
31 >>> dates[:10]
32 DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
33                '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08',
34                '2017-01-09', '2017-01-10'],
35               dtype='datetime64[ns]', freq='D')
36 >>>

 

posted on 2018-03-26 18:57  NothingLZ  阅读(278)  评论(0编辑  收藏  举报

导航