各种排序算法

注:这是好多年前用文本文档存的一篇网上别人的帖子,非原创。

各种排序算法


排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法对算法本身的速度要求很高。
  而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将
给出详细的说明。
  对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。
  我将按照算法的复杂度,从简单到难来分析算法。
第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。
  第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种
算法因为涉及树与堆的概念,所以这里不于讨论。
  第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较
奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。
  第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。由于是模板函数
可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。
  现在,让我们开始吧:
一、简单排序算法
由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境
下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么
问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。
1.冒泡法:
这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:

#include <iostream.h> 
void BubbleSort(int* pData,int Count) 
{ 
  int iTemp; 
  for(int i=1;i<Count;i++) 
  { 
    for(int j=Count-1;j>=i;j--) 
    { 
      if(pData[j]<pData[j-1]) 
      { 
        iTemp = pData[j-1]; 
        pData[j-1] = pData[j]; 
        pData[j] = iTemp; 
      } 
    } 
  } 
} 
void main() 
{ 
  int data[] = {10,9,8,7,6,5,4}; 
  BubbleSort(data,7); 
  for (int i=0;i<7;i++) 
    cout<<data[i]<<" "; 
  cout<<"\n"; 
} 

倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,
显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。
写成公式就是1/2*(n-1)*n。
现在注意,我们给出O方法的定义:
  若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没
学好数学呀,对于编程数学是非常重要的!!!)
现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。
再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的
有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),
复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的
原因,我们通常都是通过循环次数来对比算法。
2.交换法:
交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。

#include <iostream.h> 
void ExchangeSort(int* pData,int Count) 
{ 
  int iTemp; 
  for(int i=0;i<Count-1;i++) 
  { 
    for(int j=i+1;j<Count;j++) 
    { 
      if(pData[j]<pData[i]) 
      { 
        iTemp = pData[i]; 
        pData[i] = pData[j]; 
        pData[j] = iTemp; 
      } 
    } 
  } 
} 
void main() 
{ 
  int data[] = {10,9,8,7,6,5,4}; 
  ExchangeSort(data,7); 
  for (int i=0;i<7;i++) 
    cout<<data[i]<<" "; 
  cout<<"\n"; 
} 

倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样
也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以
只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。
3.选择法:
现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)
这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中
选择最小的与第二个交换,这样往复下去。

#include <iostream.h> 
void SelectSort(int* pData,int Count) 
{ 
  int iTemp; 
  int iPos; 
  for(int i=0;i<Count-1;i++) 
  { 
    iTemp = pData[i]; 
    iPos = i; 
    for(int j=i+1;j<Count;j++) 
    { 
      if(pData[j]<iTemp) 
      { 
        iTemp = pData[j]; 
        iPos = j; 
      } 
    } 
    pData[iPos] = pData[i]; 
    pData[i] = iTemp; 
  } 
} 
void main() 
{ 
  int data[] = {10,9,8,7,6,5,4}; 
  SelectSort(data,7); 
  for (int i=0;i<7;i++) 
    cout<<data[i]<<" "; 
  cout<<"\n"; 
} 

倒序(最糟情况)
第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次
其他:
第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。
所以算法复杂度为O(n*n)。
我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n
所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。
内容提要:所以算法复杂度为O(n*n)。我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。4.插...
4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张

#include <iostream.h> 
void InsertSort(int* pData,int Count) 
{ 
  int iTemp; 
  int iPos; 
  for(int i=1;i<Count;i++) 
  { 
    iTemp = pData[i]; 
    iPos = i-1; 
    while((iPos>=0) && (iTemp<pData[iPos])) 
    { 
      pData[iPos+1] = pData[iPos]; 
      iPos--; 
    } 
    pData[iPos+1] = iTemp; 
  } 
} 
void main() 
{ 
  int data[] = {10,9,8,7,6,5,4}; 
  InsertSort(data,7); 
  for (int i=0;i<7;i++) 
    cout<<data[i]<<" "; 
  cout<<"\n"; 
} 

倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次
其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次
上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,
因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单
排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似
选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’
而这里显然多了一些,所以我们浪费了时间。
最终,我个人认为,在简单排序算法中,选择法是最好的。
二、高级排序算法:
高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。
它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后
把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使
用这个过程(最容易的方法——递归)。
1.快速排序:

#include <iostream.h>
void run(int* pData,int left,int right)
{
  int i,j;
  int middle,iTemp;
  i = left;
  j = right;
  middle = pData[(left+right)/2]; //求中间值
  do{
    while((pData[i]<middle) && (i<right))//从左扫描大于中值的数
      i++;     
    while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
      j--;
    if(i<=j)//找到了一对值
    {
      //交换
      iTemp = pData[i];
      pData[i] = pData[j];
      pData[j] = iTemp;
      i++;
      j--;
    }
  }while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)
  //当左边部分有值(left<j),递归左半边
  if(left<j)
    run(pData,left,j);
  //当右边部分有值(right>i),递归右半边
  if(right>i)
    run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
  run(pData,0,Count-1);
}
void main()
{
  int data[] = {10,9,8,7,6,5,4};
  QuickSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}

这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变
成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全
不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢
于快速排序(因为要重组堆)。
三、其他排序
1.双向冒泡:
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。
代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。
写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。
反正我认为这是一段有趣的代码,值得一看。

#include <iostream.h> 
void Bubble2Sort(int* pData,int Count) 
{ 
  int iTemp; 
  int left = 1; 
  int right =Count -1; 
  int t; 
  do 
  { 
    //正向的部分 
    for(int i=right;i>=left;i--) 
    { 
      if(pData[i]<pData[i-1]) 
      { 
        iTemp = pData[i]; 
        pData[i] = pData[i-1]; 
        pData[i-1] = iTemp; 
        t = i; 
      } 
    } 
    left = t+1; 
    //反向的部分 
    for(i=left;i<right+1;i++) 
    { 
      if(pData[i]<pData[i-1]) 
      { 
        iTemp = pData[i]; 
        pData[i] = pData[i-1]; 
        pData[i-1] = iTemp; 
        t = i; 
      } 
    } 
    right = t-1; 
  }while(left<=right); 
} 
void main() 
{ 
  int data[] = {10,9,8,7,6,5,4}; 
  Bubble2Sort(data,7); 
  for (int i=0;i<7;i++) 
    cout<<data[i]<<" "; 
  cout<<"\n"; 
} 

2.SHELL排序
这个排序非常复杂,看了程序就知道了。
首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。
工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序
以次类推。

#include <iostream.h> 
void ShellSort(int* pData,int Count) 
{ 
  int step[4]; 
  step[0] = 9; 
  step[1] = 5; 
  step[2] = 3; 
  step[3] = 1; 
  int iTemp; 
  int k,s,w; 
  for(int i=0;i<4;i++) 
  { 
    k = step[i]; 
    s = -k; 
    for(int j=k;j<Count;j++) 
    { 
      iTemp = pData[j]; 
      w = j-k;//求上step个元素的下标 
      if(s ==0) 
      { 
        s = -k; 
        s++; 
        pData[s] = iTemp; 
      } 
      while((iTemp<pData[w]) && (w>=0) && (w<=Count)) 
      { 
        pData[w+k] = pData[w]; 
        w = w-k; 
      } 
      pData[w+k] = iTe
mp; 
    } 
  } 
} 
void main() 
{ 
  int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1}; 
  ShellSort(data,12); 
  for (int i=0;i<12;i++) 
    cout<<data[i]<<" "; 
  cout<<"\n"; 
} 

呵呵,程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0
步长造成程序异常而写的代码。这个代码我认为很值得一看。
这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因
避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并
“超出本书讨论范围”的原因(我也不知道过程),我们只有结果了。
四、基于模板的通用排序:
这个程序我想就没有分析的必要了,大家看一下就可以了。不明白可以在论坛上问。
MyData.h文件

/////////////////////////////////////////////////////// 
class CMyData  
{ 
public: 
  CMyData(int Index,char* strData); 
  CMyData(); 
  virtual ~CMyData(); 
  int m_iIndex; 
  int GetDataSize(){ return m_iDataSize; }; 
  const char* GetData(){ return m_strDatamember; }; 
  //这里重载了操作符: 
  CMyData& operator =(CMyData &SrcData); 
  bool operator <(CMyData& data ); 
  bool operator >(CMyData& data ); 
private: 
  char* m_strDatamember; 
  int m_iDataSize; 
}; 
//////////////////////////////////////////////////////// 
MyData.cpp文件 
//////////////////////////////////////////////////////// 
CMyData::CMyData(): 
m_iIndex(0), 
m_iDataSize(0), 
m_strDatamember(NULL) 
{ 
} 
CMyData::~CMyData() 
{ 
  if(m_strDatamember != NULL) 
    delete[] m_strDatamember; 
  m_strDatamember = NULL; 
} 
CMyData::CMyData(int Index,char* strData): 
m_iIndex(Index), 
m_iDataSize(0), 
m_strDatamember(NULL) 
{ 
  m_iDataSize = strlen(strData); 
  m_strDatamember = new char[m_iDataSize+1]; 
  strcpy(m_strDatamember,strData); 
} 
CMyData& CMyData::operator =(CMyData &SrcData) 
{ 
  m_iIndex = SrcData.m_iIndex; 
  m_iDataSize = SrcData.GetDataSize(); 
  m_strDatamember = new char[m_iDataSize+1]; 
  strcpy(m_strDatamember,SrcData.GetData()); 
  return *this; 
} 
bool CMyData::operator <(CMyData& data ) 
{ 
  return m_iIndex<data.m_iIndex; 
} 
bool CMyData::operator >(CMyData& data ) 
{ 
  return m_iIndex>data.m_iIndex; 
} 
/////////////////////////////////////////////////////////// 
////////////////////////////////////////////////////////// 
//主程序部分 
#include <iostream.h> 
#include "MyData.h" 
template <class T> 
void run(T* pData,int left,int right) 
{ 
  int i,j; 
  T middle,iTemp; 
  i = left; 
  j = right; 
  //下面的比较都调用我们重载的操作符函数 
  middle = pData[(left+right)/2]; //求中间值 
  do{ 
    while((pData[i]<middle) && (i<right))//从左扫描大于中值的数 
      i++;      
    while((pData[j]>middle) && (j>left))//从右扫描大于中值的数 
      j--; 
    if(i<=j)//找到了一对值 
    { 
      //交换 
      iTemp = pData[i]; 
      pData[i] = pData[j]; 
      pData[j] = iTemp; 
      i++; 
      j--; 
    } 
  }while(i<=j);//如果两边扫描的下标交错,就停止(完成一次) 
  //当左边部分有值(left<j),递归左半边 
  if(left<j) 
    run(pData,left,j); 
  //当右边部分有值(right>i),递归右半边 
  if(right>i) 
    run(pData,i,right); 
} 
template <class T> 
void QuickSort(T* pData,int Count) 
{ 
  run(pData,0,Count-1); 
} 
void main() 
{ 
  CMyData data[] = { 
    CMyData(8,"xulion"), 
    CMyData(7,"sanzoo"), 
    CMyData(6,"wangjun"), 
    CMyData(5,"VCKBASE"), 
    CMyData(4,"jacky2000"), 
    CMyData(3,"cwally"), 
    CMyData(2,"VCUSER"), 
    CMyData(1,"isdong") 
  }; 
  QuickSort(data,8); 
  for (int i=0;i<8;i++) 
    cout<<data[i].m_iIndex<<" "<<data[i].GetData()<<"\n"; 
  cout<<"\n"; 
} 

最后,希望大家愉快的编程。有什么意见,给我提吧! 


上一页 返回书页 下一页

posted @ 2010-07-05 15:28  LyZane  阅读(396)  评论(0编辑  收藏  举报