【opencv源码解析】 三、resize

resize.cpp 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
                 double inv_scale_x, double inv_scale_y, int interpolation )
{
    CV_INSTRUMENT_REGION()
 
    Size ssize = _src.size();
 
    CV_Assert( ssize.width > 0 && ssize.height > 0 );
    CV_Assert( dsize.area() > 0 || (inv_scale_x > 0 && inv_scale_y > 0) );
    if( dsize.area() == 0 )
    {
        dsize = Size(saturate_cast<int>(ssize.width*inv_scale_x),
                     saturate_cast<int>(ssize.height*inv_scale_y));
        CV_Assert( dsize.area() > 0 );
    }
    else
    {
        inv_scale_x = (double)dsize.width/ssize.width;
        inv_scale_y = (double)dsize.height/ssize.height;
    }
 
    CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat() && _src.cols() > 10 && _src.rows() > 10,
               ocl_resize(_src, _dst, dsize, inv_scale_x, inv_scale_y, interpolation))
 
    Mat src = _src.getMat();
    _dst.create(dsize, src.type());
    Mat dst = _dst.getMat();
 
    if (dsize == ssize)
    {
        // Source and destination are of same size. Use simple copy.
        src.copyTo(dst);
        return;
    }
 
    hal::resize(src.type(), src.data, src.step, src.cols, src.rows, dst.data, dst.step, dst.cols, dst.rows, inv_scale_x, inv_scale_y, interpolation);
}

  

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
namespace hal {
 
void resize(int src_type,
            const uchar * src_data, size_t src_step, int src_width, int src_height,
            uchar * dst_data, size_t dst_step, int dst_width, int dst_height,
            double inv_scale_x, double inv_scale_y, int interpolation)
{
    CV_INSTRUMENT_REGION()
 
    CV_Assert((dst_width * dst_height > 0) || (inv_scale_x > 0 && inv_scale_y > 0));
    if (inv_scale_x < DBL_EPSILON || inv_scale_y < DBL_EPSILON)
    {
        inv_scale_x = static_cast<double>(dst_width) / src_width;
        inv_scale_y = static_cast<double>(dst_height) / src_height;
    }
 
    CALL_HAL(resize, cv_hal_resize, src_type, src_data, src_step, src_width, src_height, dst_data, dst_step, dst_width, dst_height, inv_scale_x, inv_scale_y, interpolation);
 
    int  depth = CV_MAT_DEPTH(src_type), cn = CV_MAT_CN(src_type);
    Size dsize = Size(saturate_cast<int>(src_width*inv_scale_x),
                        saturate_cast<int>(src_height*inv_scale_y));
    CV_Assert( dsize.area() > 0 );
 
    CV_IPP_RUN_FAST(ipp_resize(src_data, src_step, src_width, src_height, dst_data, dst_step, dsize.width, dsize.height, inv_scale_x, inv_scale_y, depth, cn, interpolation))
 
    static ResizeFunc linear_tab[] =
    {
        resizeGeneric_<
            HResizeLinear<uchar, int, short,
                INTER_RESIZE_COEF_SCALE,
                HResizeLinearVec_8u32s>,
            VResizeLinear<uchar, int, short,
                FixedPtCast<int, uchar, INTER_RESIZE_COEF_BITS*2>,
                VResizeLinearVec_32s8u> >,
        0,
        resizeGeneric_<
            HResizeLinear<ushort, float, float, 1,
                HResizeLinearVec_16u32f>,
            VResizeLinear<ushort, float, float, Cast<float, ushort>,
                VResizeLinearVec_32f16u> >,
        resizeGeneric_<
            HResizeLinear<short, float, float, 1,
                HResizeLinearVec_16s32f>,
            VResizeLinear<short, float, float, Cast<float, short>,
                VResizeLinearVec_32f16s> >,
        0,
        resizeGeneric_<
            HResizeLinear<float, float, float, 1,
                HResizeLinearVec_32f>,
            VResizeLinear<float, float, float, Cast<float, float>,
                VResizeLinearVec_32f> >,
        resizeGeneric_<
            HResizeLinear<double, double, float, 1,
                HResizeNoVec>,
            VResizeLinear<double, double, float, Cast<double, double>,
                VResizeNoVec> >,
        0
    };
 
    static ResizeFunc cubic_tab[] =
    {
        resizeGeneric_<
            HResizeCubic<uchar, int, short>,
            VResizeCubic<uchar, int, short,
                FixedPtCast<int, uchar, INTER_RESIZE_COEF_BITS*2>,
                VResizeCubicVec_32s8u> >,
        0,
        resizeGeneric_<
            HResizeCubic<ushort, float, float>,
            VResizeCubic<ushort, float, float, Cast<float, ushort>,
            VResizeCubicVec_32f16u> >,
        resizeGeneric_<
            HResizeCubic<short, float, float>,
            VResizeCubic<short, float, float, Cast<float, short>,
            VResizeCubicVec_32f16s> >,
        0,
        resizeGeneric_<
            HResizeCubic<float, float, float>,
            VResizeCubic<float, float, float, Cast<float, float>,
            VResizeCubicVec_32f> >,
        resizeGeneric_<
            HResizeCubic<double, double, float>,
            VResizeCubic<double, double, float, Cast<double, double>,
            VResizeNoVec> >,
        0
    };
 
    static ResizeFunc lanczos4_tab[] =
    {
        resizeGeneric_<HResizeLanczos4<uchar, int, short>,
            VResizeLanczos4<uchar, int, short,
            FixedPtCast<int, uchar, INTER_RESIZE_COEF_BITS*2>,
            VResizeNoVec> >,
        0,
        resizeGeneric_<HResizeLanczos4<ushort, float, float>,
            VResizeLanczos4<ushort, float, float, Cast<float, ushort>,
            VResizeLanczos4Vec_32f16u> >,
        resizeGeneric_<HResizeLanczos4<short, float, float>,
            VResizeLanczos4<short, float, float, Cast<float, short>,
            VResizeLanczos4Vec_32f16s> >,
        0,
        resizeGeneric_<HResizeLanczos4<float, float, float>,
            VResizeLanczos4<float, float, float, Cast<float, float>,
            VResizeLanczos4Vec_32f> >,
        resizeGeneric_<HResizeLanczos4<double, double, float>,
            VResizeLanczos4<double, double, float, Cast<double, double>,
            VResizeNoVec> >,
        0
    };
 
    static ResizeAreaFastFunc areafast_tab[] =
    {
        resizeAreaFast_<uchar, int, ResizeAreaFastVec<uchar, ResizeAreaFastVec_SIMD_8u> >,
        0,
        resizeAreaFast_<ushort, float, ResizeAreaFastVec<ushort, ResizeAreaFastVec_SIMD_16u> >,
        resizeAreaFast_<short, float, ResizeAreaFastVec<short, ResizeAreaFastVec_SIMD_16s> >,
        0,
        resizeAreaFast_<float, float, ResizeAreaFastVec_SIMD_32f>,
        resizeAreaFast_<double, double, ResizeAreaFastNoVec<double, double> >,
        0
    };
 
    static ResizeAreaFunc area_tab[] =
    {
        resizeArea_<uchar, float>, 0, resizeArea_<ushort, float>,
        resizeArea_<short, float>, 0, resizeArea_<float, float>,
        resizeArea_<double, double>, 0
    };
 
    double scale_x = 1./inv_scale_x, scale_y = 1./inv_scale_y;
 
    int iscale_x = saturate_cast<int>(scale_x);
    int iscale_y = saturate_cast<int>(scale_y);
 
    bool is_area_fast = std::abs(scale_x - iscale_x) < DBL_EPSILON &&
            std::abs(scale_y - iscale_y) < DBL_EPSILON;
 
    Mat src(Size(src_width, src_height), src_type, const_cast<uchar*>(src_data), src_step);
    Mat dst(dsize, src_type, dst_data, dst_step);
 
    if( interpolation == INTER_NEAREST )
    {
        resizeNN( src, dst, inv_scale_x, inv_scale_y );
        return;
    }
 
    int k, sx, sy, dx, dy;
 
 
    {
        // in case of scale_x && scale_y is equal to 2
        // INTER_AREA (fast) also is equal to INTER_LINEAR///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////双线性插值//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
        if( interpolation == INTER_LINEAR && is_area_fast && iscale_x == 2 && iscale_y == 2 )
            interpolation = INTER_AREA;
 
        // true "area" interpolation is only implemented for the case (scale_x <= 1 && scale_y <= 1).
        // In other cases it is emulated using some variant of bilinear interpolation
        if( interpolation == INTER_AREA && scale_x >= 1 && scale_y >= 1 )
        {
            if( is_area_fast )
            {
                int area = iscale_x*iscale_y;
                size_t srcstep = src_step / src.elemSize1();
                AutoBuffer<int> _ofs(area + dsize.width*cn);
                int* ofs = _ofs;
                int* xofs = ofs + area;
                ResizeAreaFastFunc func = areafast_tab[depth];
                CV_Assert( func != 0 );
 
                for( sy = 0, k = 0; sy < iscale_y; sy++ )
                    for( sx = 0; sx < iscale_x; sx++ )
                        ofs[k++] = (int)(sy*srcstep + sx*cn);
 
                for( dx = 0; dx < dsize.width; dx++ )
                {
                    int j = dx * cn;
                    sx = iscale_x * j;
                    for( k = 0; k < cn; k++ )
                        xofs[j + k] = sx + k;
                }
 
                func( src, dst, ofs, xofs, iscale_x, iscale_y );
                return;
            }
 
            ResizeAreaFunc func = area_tab[depth];
            CV_Assert( func != 0 && cn <= 4 );
 
            AutoBuffer<DecimateAlpha> _xytab((src_width + src_height)*2);
            DecimateAlpha* xtab = _xytab, *ytab = xtab + src_width*2;
 
            int xtab_size = computeResizeAreaTab(src_width, dsize.width, cn, scale_x, xtab);
            int ytab_size = computeResizeAreaTab(src_height, dsize.height, 1, scale_y, ytab);
 
            AutoBuffer<int> _tabofs(dsize.height + 1);
            int* tabofs = _tabofs;
            for( k = 0, dy = 0; k < ytab_size; k++ )
            {
                if( k == 0 || ytab[k].di != ytab[k-1].di )
                {
                    assert( ytab[k].di == dy );
                    tabofs[dy++] = k;
                }
            }
            tabofs[dy] = ytab_size;
 
            func( src, dst, xtab, xtab_size, ytab, ytab_size, tabofs );
            return;
        }
    }
 
    int xmin = 0, xmax = dsize.width, width = dsize.width*cn;
    bool area_mode = interpolation == INTER_AREA;
    bool fixpt = depth == CV_8U;
    float fx, fy;
    ResizeFunc func=0;
    int ksize=0, ksize2;
    if( interpolation == INTER_CUBIC )
        ksize = 4, func = cubic_tab[depth];
    else if( interpolation == INTER_LANCZOS4 )
        ksize = 8, func = lanczos4_tab[depth];
    else if( interpolation == INTER_LINEAR || interpolation == INTER_AREA )
        ksize = 2, func = linear_tab[depth];
    else
        CV_Error( CV_StsBadArg, "Unknown interpolation method" );
    ksize2 = ksize/2;
 
    CV_Assert( func != 0 );
 
    AutoBuffer<uchar> _buffer((width + dsize.height)*(sizeof(int) + sizeof(float)*ksize));
    int* xofs = (int*)(uchar*)_buffer;
    int* yofs = xofs + width;
    float* alpha = (float*)(yofs + dsize.height);
    short* ialpha = (short*)alpha;
    float* beta = alpha + width*ksize;
    short* ibeta = ialpha + width*ksize;
    float cbuf[MAX_ESIZE] = {0};
 
    for( dx = 0; dx < dsize.width; dx++ )
    {
        if( !area_mode )
        {
            fx = (float)((dx+0.5)*scale_x - 0.5);
            sx = cvFloor(fx);
            fx -= sx;
        }
        else
        {
            sx = cvFloor(dx*scale_x);
            fx = (float)((dx+1) - (sx+1)*inv_scale_x);
            fx = fx <= 0 ? 0.f : fx - cvFloor(fx);
        }
 
        if( sx < ksize2-1 )
        {
            xmin = dx+1;
            if( sx < 0 && (interpolation != INTER_CUBIC && interpolation != INTER_LANCZOS4))
                fx = 0, sx = 0;
        }
 
        if( sx + ksize2 >= src_width )
        {
            xmax = std::min( xmax, dx );
            if( sx >= src_width-1 && (interpolation != INTER_CUBIC && interpolation != INTER_LANCZOS4))
                fx = 0, sx = src_width-1;
        }
 
        for( k = 0, sx *= cn; k < cn; k++ )
            xofs[dx*cn + k] = sx + k;
 
        if( interpolation == INTER_CUBIC )
            interpolateCubic( fx, cbuf );
        else if( interpolation == INTER_LANCZOS4 )
            interpolateLanczos4( fx, cbuf );
        else
        {
            cbuf[0] = 1.f - fx;
            cbuf[1] = fx;
        }
        if( fixpt )
        {
            for( k = 0; k < ksize; k++ )
                ialpha[dx*cn*ksize + k] = saturate_cast<short>(cbuf[k]*INTER_RESIZE_COEF_SCALE);
            for( ; k < cn*ksize; k++ )
                ialpha[dx*cn*ksize + k] = ialpha[dx*cn*ksize + k - ksize];
        }
        else
        {
            for( k = 0; k < ksize; k++ )
                alpha[dx*cn*ksize + k] = cbuf[k];
            for( ; k < cn*ksize; k++ )
                alpha[dx*cn*ksize + k] = alpha[dx*cn*ksize + k - ksize];
        }
    }
 
    for( dy = 0; dy < dsize.height; dy++ )
    {
        if( !area_mode )
        {
            fy = (float)((dy+0.5)*scale_y - 0.5);
            sy = cvFloor(fy);
            fy -= sy;
        }
        else
        {
            sy = cvFloor(dy*scale_y);
            fy = (float)((dy+1) - (sy+1)*inv_scale_y);
            fy = fy <= 0 ? 0.f : fy - cvFloor(fy);
        }
 
        yofs[dy] = sy;
        if( interpolation == INTER_CUBIC )
            interpolateCubic( fy, cbuf );
        else if( interpolation == INTER_LANCZOS4 )
            interpolateLanczos4( fy, cbuf );
        else
        {
            cbuf[0] = 1.f - fy;
            cbuf[1] = fy;
        }
 
        if( fixpt )
        {
            for( k = 0; k < ksize; k++ )
                ibeta[dy*ksize + k] = saturate_cast<short>(cbuf[k]*INTER_RESIZE_COEF_SCALE);
        }
        else
        {
            for( k = 0; k < ksize; k++ )
                beta[dy*ksize + k] = cbuf[k];
        }
    }
 
    func( src, dst, xofs, fixpt ? (void*)ialpha : (void*)alpha, yofs,
          fixpt ? (void*)ibeta : (void*)beta, xmin, xmax, ksize );
}
 
} // cv::hal::
} // cv::

  

posted @   洛笔达  阅读(3626)  评论(0编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· 语音处理 开源项目 EchoSharp
· 《HelloGitHub》第 106 期
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 使用 Dify + LLM 构建精确任务处理应用
点击右上角即可分享
微信分享提示