opencv 源码分析 CUDA可分离滤波器设计 ( 发现OpenCV的cuda真TM慢 )

1. 主函数

    void SeparableLinearFilter::apply(InputArray _src, OutputArray _dst, Stream& _stream)
    {
        GpuMat src = _src.getGpuMat();
        CV_Assert( src.type() == srcType_ );

        _dst.create(src.size(), dstType_);
        GpuMat dst = _dst.getGpuMat();

        ensureSizeIsEnough(src.size(), bufType_, buf_);

        DeviceInfo devInfo;
        const int cc = devInfo.majorVersion() * 10 + devInfo.minorVersion();

        cudaStream_t stream = StreamAccessor::getStream(_stream);

        rowFilter_(src, buf_, rowKernel_.ptr<float>(), rowKernel_.cols, anchor_.x, rowBorderMode_, cc, stream);
        columnFilter_(buf_, dst, columnKernel_.ptr<float>(), columnKernel_.cols, anchor_.y, columnBorderMode_, cc, stream);
    }

 

the block of col is   16X16 , the block of  row is 32X8 

 

 

2. COL

namespace filter
{
    template <typename T, typename D>
    void linearColumn(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream)
    {
        typedef void (*caller_t)(PtrStepSz<T> src, PtrStepSz<D> dst, const float* kernel, int anchor, int cc, cudaStream_t stream);

        static const caller_t callers[5][33] =
        {
            {
                0,
                column_filter::caller< 1, T, D, BrdColConstant>,
                column_filter::caller< 2, T, D, BrdColConstant>,
                column_filter::caller< 3, T, D, BrdColConstant>,
                column_filter::caller< 4, T, D, BrdColConstant>,
                column_filter::caller< 5, T, D, BrdColConstant>,
                column_filter::caller< 6, T, D, BrdColConstant>,
                column_filter::caller< 7, T, D, BrdColConstant>,
                column_filter::caller< 8, T, D, BrdColConstant>,
                column_filter::caller< 9, T, D, BrdColConstant>,
                column_filter::caller<10, T, D, BrdColConstant>,
                column_filter::caller<11, T, D, BrdColConstant>,
                column_filter::caller<12, T, D, BrdColConstant>,
                column_filter::caller<13, T, D, BrdColConstant>,
                column_filter::caller<14, T, D, BrdColConstant>,
                column_filter::caller<15, T, D, BrdColConstant>,
                column_filter::caller<16, T, D, BrdColConstant>,
                column_filter::caller<17, T, D, BrdColConstant>,
                column_filter::caller<18, T, D, BrdColConstant>,
                column_filter::caller<19, T, D, BrdColConstant>,
                column_filter::caller<20, T, D, BrdColConstant>,
                column_filter::caller<21, T, D, BrdColConstant>,
                column_filter::caller<22, T, D, BrdColConstant>,
                column_filter::caller<23, T, D, BrdColConstant>,
                column_filter::caller<24, T, D, BrdColConstant>,
                column_filter::caller<25, T, D, BrdColConstant>,
                column_filter::caller<26, T, D, BrdColConstant>,
                column_filter::caller<27, T, D, BrdColConstant>,
                column_filter::caller<28, T, D, BrdColConstant>,
                column_filter::caller<29, T, D, BrdColConstant>,
                column_filter::caller<30, T, D, BrdColConstant>,
                column_filter::caller<31, T, D, BrdColConstant>,
                column_filter::caller<32, T, D, BrdColConstant>
            },
            {
                0,
                column_filter::caller< 1, T, D, BrdColReplicate>,
                column_filter::caller< 2, T, D, BrdColReplicate>,
                column_filter::caller< 3, T, D, BrdColReplicate>,
                column_filter::caller< 4, T, D, BrdColReplicate>,
                column_filter::caller< 5, T, D, BrdColReplicate>,
                column_filter::caller< 6, T, D, BrdColReplicate>,
                column_filter::caller< 7, T, D, BrdColReplicate>,
                column_filter::caller< 8, T, D, BrdColReplicate>,
                column_filter::caller< 9, T, D, BrdColReplicate>,
                column_filter::caller<10, T, D, BrdColReplicate>,
                column_filter::caller<11, T, D, BrdColReplicate>,
                column_filter::caller<12, T, D, BrdColReplicate>,
                column_filter::caller<13, T, D, BrdColReplicate>,
                column_filter::caller<14, T, D, BrdColReplicate>,
                column_filter::caller<15, T, D, BrdColReplicate>,
                column_filter::caller<16, T, D, BrdColReplicate>,
                column_filter::caller<17, T, D, BrdColReplicate>,
                column_filter::caller<18, T, D, BrdColReplicate>,
                column_filter::caller<19, T, D, BrdColReplicate>,
                column_filter::caller<20, T, D, BrdColReplicate>,
                column_filter::caller<21, T, D, BrdColReplicate>,
                column_filter::caller<22, T, D, BrdColReplicate>,
                column_filter::caller<23, T, D, BrdColReplicate>,
                column_filter::caller<24, T, D, BrdColReplicate>,
                column_filter::caller<25, T, D, BrdColReplicate>,
                column_filter::caller<26, T, D, BrdColReplicate>,
                column_filter::caller<27, T, D, BrdColReplicate>,
                column_filter::caller<28, T, D, BrdColReplicate>,
                column_filter::caller<29, T, D, BrdColReplicate>,
                column_filter::caller<30, T, D, BrdColReplicate>,
                column_filter::caller<31, T, D, BrdColReplicate>,
                column_filter::caller<32, T, D, BrdColReplicate>
            },
            {
                0,
                column_filter::caller< 1, T, D, BrdColReflect>,
                column_filter::caller< 2, T, D, BrdColReflect>,
                column_filter::caller< 3, T, D, BrdColReflect>,
                column_filter::caller< 4, T, D, BrdColReflect>,
                column_filter::caller< 5, T, D, BrdColReflect>,
                column_filter::caller< 6, T, D, BrdColReflect>,
                column_filter::caller< 7, T, D, BrdColReflect>,
                column_filter::caller< 8, T, D, BrdColReflect>,
                column_filter::caller< 9, T, D, BrdColReflect>,
                column_filter::caller<10, T, D, BrdColReflect>,
                column_filter::caller<11, T, D, BrdColReflect>,
                column_filter::caller<12, T, D, BrdColReflect>,
                column_filter::caller<13, T, D, BrdColReflect>,
                column_filter::caller<14, T, D, BrdColReflect>,
                column_filter::caller<15, T, D, BrdColReflect>,
                column_filter::caller<16, T, D, BrdColReflect>,
                column_filter::caller<17, T, D, BrdColReflect>,
                column_filter::caller<18, T, D, BrdColReflect>,
                column_filter::caller<19, T, D, BrdColReflect>,
                column_filter::caller<20, T, D, BrdColReflect>,
                column_filter::caller<21, T, D, BrdColReflect>,
                column_filter::caller<22, T, D, BrdColReflect>,
                column_filter::caller<23, T, D, BrdColReflect>,
                column_filter::caller<24, T, D, BrdColReflect>,
                column_filter::caller<25, T, D, BrdColReflect>,
                column_filter::caller<26, T, D, BrdColReflect>,
                column_filter::caller<27, T, D, BrdColReflect>,
                column_filter::caller<28, T, D, BrdColReflect>,
                column_filter::caller<29, T, D, BrdColReflect>,
                column_filter::caller<30, T, D, BrdColReflect>,
                column_filter::caller<31, T, D, BrdColReflect>,
                column_filter::caller<32, T, D, BrdColReflect>
            },
            {
                0,
                column_filter::caller< 1, T, D, BrdColWrap>,
                column_filter::caller< 2, T, D, BrdColWrap>,
                column_filter::caller< 3, T, D, BrdColWrap>,
                column_filter::caller< 4, T, D, BrdColWrap>,
                column_filter::caller< 5, T, D, BrdColWrap>,
                column_filter::caller< 6, T, D, BrdColWrap>,
                column_filter::caller< 7, T, D, BrdColWrap>,
                column_filter::caller< 8, T, D, BrdColWrap>,
                column_filter::caller< 9, T, D, BrdColWrap>,
                column_filter::caller<10, T, D, BrdColWrap>,
                column_filter::caller<11, T, D, BrdColWrap>,
                column_filter::caller<12, T, D, BrdColWrap>,
                column_filter::caller<13, T, D, BrdColWrap>,
                column_filter::caller<14, T, D, BrdColWrap>,
                column_filter::caller<15, T, D, BrdColWrap>,
                column_filter::caller<16, T, D, BrdColWrap>,
                column_filter::caller<17, T, D, BrdColWrap>,
                column_filter::caller<18, T, D, BrdColWrap>,
                column_filter::caller<19, T, D, BrdColWrap>,
                column_filter::caller<20, T, D, BrdColWrap>,
                column_filter::caller<21, T, D, BrdColWrap>,
                column_filter::caller<22, T, D, BrdColWrap>,
                column_filter::caller<23, T, D, BrdColWrap>,
                column_filter::caller<24, T, D, BrdColWrap>,
                column_filter::caller<25, T, D, BrdColWrap>,
                column_filter::caller<26, T, D, BrdColWrap>,
                column_filter::caller<27, T, D, BrdColWrap>,
                column_filter::caller<28, T, D, BrdColWrap>,
                column_filter::caller<29, T, D, BrdColWrap>,
                column_filter::caller<30, T, D, BrdColWrap>,
                column_filter::caller<31, T, D, BrdColWrap>,
                column_filter::caller<32, T, D, BrdColWrap>
            },
            {
                0,
                column_filter::caller< 1, T, D, BrdColReflect101>,
                column_filter::caller< 2, T, D, BrdColReflect101>,
                column_filter::caller< 3, T, D, BrdColReflect101>,
                column_filter::caller< 4, T, D, BrdColReflect101>,
                column_filter::caller< 5, T, D, BrdColReflect101>,
                column_filter::caller< 6, T, D, BrdColReflect101>,
                column_filter::caller< 7, T, D, BrdColReflect101>,
                column_filter::caller< 8, T, D, BrdColReflect101>,
                column_filter::caller< 9, T, D, BrdColReflect101>,
                column_filter::caller<10, T, D, BrdColReflect101>,
                column_filter::caller<11, T, D, BrdColReflect101>,
                column_filter::caller<12, T, D, BrdColReflect101>,
                column_filter::caller<13, T, D, BrdColReflect101>,
                column_filter::caller<14, T, D, BrdColReflect101>,
                column_filter::caller<15, T, D, BrdColReflect101>,
                column_filter::caller<16, T, D, BrdColReflect101>,
                column_filter::caller<17, T, D, BrdColReflect101>,
                column_filter::caller<18, T, D, BrdColReflect101>,
                column_filter::caller<19, T, D, BrdColReflect101>,
                column_filter::caller<20, T, D, BrdColReflect101>,
                column_filter::caller<21, T, D, BrdColReflect101>,
                column_filter::caller<22, T, D, BrdColReflect101>,
                column_filter::caller<23, T, D, BrdColReflect101>,
                column_filter::caller<24, T, D, BrdColReflect101>,
                column_filter::caller<25, T, D, BrdColReflect101>,
                column_filter::caller<26, T, D, BrdColReflect101>,
                column_filter::caller<27, T, D, BrdColReflect101>,
                column_filter::caller<28, T, D, BrdColReflect101>,
                column_filter::caller<29, T, D, BrdColReflect101>,
                column_filter::caller<30, T, D, BrdColReflect101>,
                column_filter::caller<31, T, D, BrdColReflect101>,
                column_filter::caller<32, T, D, BrdColReflect101>
            }
        };

        callers[brd_type][ksize]((PtrStepSz<T>)src, (PtrStepSz<D>)dst, kernel, anchor, cc, stream);
    }
}

 

    template <int KSIZE, typename T, typename D, template<typename> class B>
    void caller(PtrStepSz<T> src, PtrStepSz<D> dst, const float* kernel, int anchor, int cc, cudaStream_t stream)
    {
        int BLOCK_DIM_X;
        int BLOCK_DIM_Y;
        int PATCH_PER_BLOCK;

        if (cc >= 20)
        {
            BLOCK_DIM_X = 16;
            BLOCK_DIM_Y = 16;
            PATCH_PER_BLOCK = 4;
        }
        else
        {
            BLOCK_DIM_X = 16;
            BLOCK_DIM_Y = 8;
            PATCH_PER_BLOCK = 2;
        }

        const dim3 block(BLOCK_DIM_X, BLOCK_DIM_Y);
        const dim3 grid(divUp(src.cols, BLOCK_DIM_X), divUp(src.rows, BLOCK_DIM_Y * PATCH_PER_BLOCK));

        B<T> brd(src.rows);

        linearColumnFilter<KSIZE, T, D><<<grid, block, 0, stream>>>(src, dst, kernel, anchor, brd);

        cudaSafeCall( cudaGetLastError() );

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
}

 

    #define MAX_KERNEL_SIZE 32

    template <int KSIZE, typename T, typename D, typename B>
    __global__ void linearColumnFilter(const PtrStepSz<T> src, PtrStep<D> dst, const float* kernel, const int anchor, const B brd)
    {
        #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 200)
            const int BLOCK_DIM_X = 16;
            const int BLOCK_DIM_Y = 16;
            const int PATCH_PER_BLOCK = 4;
            const int HALO_SIZE = KSIZE <= 16 ? 1 : 2;
        #else
            const int BLOCK_DIM_X = 16;
            const int BLOCK_DIM_Y = 8;
            const int PATCH_PER_BLOCK = 2;
            const int HALO_SIZE = 2;
        #endif

        typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_t;

        __shared__ sum_t smem[(PATCH_PER_BLOCK + 2 * HALO_SIZE) * BLOCK_DIM_Y][BLOCK_DIM_X];

        const int x = blockIdx.x * BLOCK_DIM_X + threadIdx.x;

        if (x >= src.cols)
            return;

        const T* src_col = src.ptr() + x;

        const int yStart = blockIdx.y * (BLOCK_DIM_Y * PATCH_PER_BLOCK) + threadIdx.y;

        if (blockIdx.y > 0)
        {
            //Upper halo
            #pragma unroll
            for (int j = 0; j < HALO_SIZE; ++j)
                smem[threadIdx.y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(src(yStart - (HALO_SIZE - j) * BLOCK_DIM_Y, x));
        }
        else
        {
            //Upper halo
            #pragma unroll
            for (int j = 0; j < HALO_SIZE; ++j)
                smem[threadIdx.y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(brd.at_low(yStart - (HALO_SIZE - j) * BLOCK_DIM_Y, src_col, src.step));
        }

        if (blockIdx.y + 2 < gridDim.y)
        {
            //Main data
            #pragma unroll
            for (int j = 0; j < PATCH_PER_BLOCK; ++j)
                smem[threadIdx.y + HALO_SIZE * BLOCK_DIM_Y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(src(yStart + j * BLOCK_DIM_Y, x));

            //Lower halo
            #pragma unroll
            for (int j = 0; j < HALO_SIZE; ++j)
                smem[threadIdx.y + (PATCH_PER_BLOCK + HALO_SIZE) * BLOCK_DIM_Y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(src(yStart + (PATCH_PER_BLOCK + j) * BLOCK_DIM_Y, x));
        }
        else
        {
            //Main data
            #pragma unroll
            for (int j = 0; j < PATCH_PER_BLOCK; ++j)
                smem[threadIdx.y + HALO_SIZE * BLOCK_DIM_Y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(brd.at_high(yStart + j * BLOCK_DIM_Y, src_col, src.step));

            //Lower halo
            #pragma unroll
            for (int j = 0; j < HALO_SIZE; ++j)
                smem[threadIdx.y + (PATCH_PER_BLOCK + HALO_SIZE) * BLOCK_DIM_Y + j * BLOCK_DIM_Y][threadIdx.x] = saturate_cast<sum_t>(brd.at_high(yStart + (PATCH_PER_BLOCK + j) * BLOCK_DIM_Y, src_col, src.step));
        }

        __syncthreads();

        #pragma unroll
        for (int j = 0; j < PATCH_PER_BLOCK; ++j)
        {
            const int y = yStart + j * BLOCK_DIM_Y;

            if (y < src.rows)
            {
                sum_t sum = VecTraits<sum_t>::all(0);

                #pragma unroll
                for (int k = 0; k < KSIZE; ++k)
                    sum = sum + smem[threadIdx.y + HALO_SIZE * BLOCK_DIM_Y + j * BLOCK_DIM_Y - anchor + k][threadIdx.x] * kernel[k];

                dst(y, x) = saturate_cast<D>(sum);
            }
        }
    }

 

 

 

3.  ROW

namespace filter
{
    template <typename T, typename D>
    void linearRow(PtrStepSzb src, PtrStepSzb dst, const float* kernel, int ksize, int anchor, int brd_type, int cc, cudaStream_t stream)
    {
        typedef void (*caller_t)(PtrStepSz<T> src, PtrStepSz<D> dst, const float* kernel, int anchor, int cc, cudaStream_t stream);

        static const caller_t callers[5][33] =
        {
            {
                0,
                row_filter::caller< 1, T, D, BrdRowConstant>,
                row_filter::caller< 2, T, D, BrdRowConstant>,
                row_filter::caller< 3, T, D, BrdRowConstant>,
                row_filter::caller< 4, T, D, BrdRowConstant>,
                row_filter::caller< 5, T, D, BrdRowConstant>,
                row_filter::caller< 6, T, D, BrdRowConstant>,
                row_filter::caller< 7, T, D, BrdRowConstant>,
                row_filter::caller< 8, T, D, BrdRowConstant>,
                row_filter::caller< 9, T, D, BrdRowConstant>,
                row_filter::caller<10, T, D, BrdRowConstant>,
                row_filter::caller<11, T, D, BrdRowConstant>,
                row_filter::caller<12, T, D, BrdRowConstant>,
                row_filter::caller<13, T, D, BrdRowConstant>,
                row_filter::caller<14, T, D, BrdRowConstant>,
                row_filter::caller<15, T, D, BrdRowConstant>,
                row_filter::caller<16, T, D, BrdRowConstant>,
                row_filter::caller<17, T, D, BrdRowConstant>,
                row_filter::caller<18, T, D, BrdRowConstant>,
                row_filter::caller<19, T, D, BrdRowConstant>,
                row_filter::caller<20, T, D, BrdRowConstant>,
                row_filter::caller<21, T, D, BrdRowConstant>,
                row_filter::caller<22, T, D, BrdRowConstant>,
                row_filter::caller<23, T, D, BrdRowConstant>,
                row_filter::caller<24, T, D, BrdRowConstant>,
                row_filter::caller<25, T, D, BrdRowConstant>,
                row_filter::caller<26, T, D, BrdRowConstant>,
                row_filter::caller<27, T, D, BrdRowConstant>,
                row_filter::caller<28, T, D, BrdRowConstant>,
                row_filter::caller<29, T, D, BrdRowConstant>,
                row_filter::caller<30, T, D, BrdRowConstant>,
                row_filter::caller<31, T, D, BrdRowConstant>,
                row_filter::caller<32, T, D, BrdRowConstant>
            },
            {
                0,
                row_filter::caller< 1, T, D, BrdRowReplicate>,
                row_filter::caller< 2, T, D, BrdRowReplicate>,
                row_filter::caller< 3, T, D, BrdRowReplicate>,
                row_filter::caller< 4, T, D, BrdRowReplicate>,
                row_filter::caller< 5, T, D, BrdRowReplicate>,
                row_filter::caller< 6, T, D, BrdRowReplicate>,
                row_filter::caller< 7, T, D, BrdRowReplicate>,
                row_filter::caller< 8, T, D, BrdRowReplicate>,
                row_filter::caller< 9, T, D, BrdRowReplicate>,
                row_filter::caller<10, T, D, BrdRowReplicate>,
                row_filter::caller<11, T, D, BrdRowReplicate>,
                row_filter::caller<12, T, D, BrdRowReplicate>,
                row_filter::caller<13, T, D, BrdRowReplicate>,
                row_filter::caller<14, T, D, BrdRowReplicate>,
                row_filter::caller<15, T, D, BrdRowReplicate>,
                row_filter::caller<16, T, D, BrdRowReplicate>,
                row_filter::caller<17, T, D, BrdRowReplicate>,
                row_filter::caller<18, T, D, BrdRowReplicate>,
                row_filter::caller<19, T, D, BrdRowReplicate>,
                row_filter::caller<20, T, D, BrdRowReplicate>,
                row_filter::caller<21, T, D, BrdRowReplicate>,
                row_filter::caller<22, T, D, BrdRowReplicate>,
                row_filter::caller<23, T, D, BrdRowReplicate>,
                row_filter::caller<24, T, D, BrdRowReplicate>,
                row_filter::caller<25, T, D, BrdRowReplicate>,
                row_filter::caller<26, T, D, BrdRowReplicate>,
                row_filter::caller<27, T, D, BrdRowReplicate>,
                row_filter::caller<28, T, D, BrdRowReplicate>,
                row_filter::caller<29, T, D, BrdRowReplicate>,
                row_filter::caller<30, T, D, BrdRowReplicate>,
                row_filter::caller<31, T, D, BrdRowReplicate>,
                row_filter::caller<32, T, D, BrdRowReplicate>
            },
            {
                0,
                row_filter::caller< 1, T, D, BrdRowReflect>,
                row_filter::caller< 2, T, D, BrdRowReflect>,
                row_filter::caller< 3, T, D, BrdRowReflect>,
                row_filter::caller< 4, T, D, BrdRowReflect>,
                row_filter::caller< 5, T, D, BrdRowReflect>,
                row_filter::caller< 6, T, D, BrdRowReflect>,
                row_filter::caller< 7, T, D, BrdRowReflect>,
                row_filter::caller< 8, T, D, BrdRowReflect>,
                row_filter::caller< 9, T, D, BrdRowReflect>,
                row_filter::caller<10, T, D, BrdRowReflect>,
                row_filter::caller<11, T, D, BrdRowReflect>,
                row_filter::caller<12, T, D, BrdRowReflect>,
                row_filter::caller<13, T, D, BrdRowReflect>,
                row_filter::caller<14, T, D, BrdRowReflect>,
                row_filter::caller<15, T, D, BrdRowReflect>,
                row_filter::caller<16, T, D, BrdRowReflect>,
                row_filter::caller<17, T, D, BrdRowReflect>,
                row_filter::caller<18, T, D, BrdRowReflect>,
                row_filter::caller<19, T, D, BrdRowReflect>,
                row_filter::caller<20, T, D, BrdRowReflect>,
                row_filter::caller<21, T, D, BrdRowReflect>,
                row_filter::caller<22, T, D, BrdRowReflect>,
                row_filter::caller<23, T, D, BrdRowReflect>,
                row_filter::caller<24, T, D, BrdRowReflect>,
                row_filter::caller<25, T, D, BrdRowReflect>,
                row_filter::caller<26, T, D, BrdRowReflect>,
                row_filter::caller<27, T, D, BrdRowReflect>,
                row_filter::caller<28, T, D, BrdRowReflect>,
                row_filter::caller<29, T, D, BrdRowReflect>,
                row_filter::caller<30, T, D, BrdRowReflect>,
                row_filter::caller<31, T, D, BrdRowReflect>,
                row_filter::caller<32, T, D, BrdRowReflect>
            },
            {
                0,
                row_filter::caller< 1, T, D, BrdRowWrap>,
                row_filter::caller< 2, T, D, BrdRowWrap>,
                row_filter::caller< 3, T, D, BrdRowWrap>,
                row_filter::caller< 4, T, D, BrdRowWrap>,
                row_filter::caller< 5, T, D, BrdRowWrap>,
                row_filter::caller< 6, T, D, BrdRowWrap>,
                row_filter::caller< 7, T, D, BrdRowWrap>,
                row_filter::caller< 8, T, D, BrdRowWrap>,
                row_filter::caller< 9, T, D, BrdRowWrap>,
                row_filter::caller<10, T, D, BrdRowWrap>,
                row_filter::caller<11, T, D, BrdRowWrap>,
                row_filter::caller<12, T, D, BrdRowWrap>,
                row_filter::caller<13, T, D, BrdRowWrap>,
                row_filter::caller<14, T, D, BrdRowWrap>,
                row_filter::caller<15, T, D, BrdRowWrap>,
                row_filter::caller<16, T, D, BrdRowWrap>,
                row_filter::caller<17, T, D, BrdRowWrap>,
                row_filter::caller<18, T, D, BrdRowWrap>,
                row_filter::caller<19, T, D, BrdRowWrap>,
                row_filter::caller<20, T, D, BrdRowWrap>,
                row_filter::caller<21, T, D, BrdRowWrap>,
                row_filter::caller<22, T, D, BrdRowWrap>,
                row_filter::caller<23, T, D, BrdRowWrap>,
                row_filter::caller<24, T, D, BrdRowWrap>,
                row_filter::caller<25, T, D, BrdRowWrap>,
                row_filter::caller<26, T, D, BrdRowWrap>,
                row_filter::caller<27, T, D, BrdRowWrap>,
                row_filter::caller<28, T, D, BrdRowWrap>,
                row_filter::caller<29, T, D, BrdRowWrap>,
                row_filter::caller<30, T, D, BrdRowWrap>,
                row_filter::caller<31, T, D, BrdRowWrap>,
                row_filter::caller<32, T, D, BrdRowWrap>
            },
            {
                0,
                row_filter::caller< 1, T, D, BrdRowReflect101>,
                row_filter::caller< 2, T, D, BrdRowReflect101>,
                row_filter::caller< 3, T, D, BrdRowReflect101>,
                row_filter::caller< 4, T, D, BrdRowReflect101>,
                row_filter::caller< 5, T, D, BrdRowReflect101>,
                row_filter::caller< 6, T, D, BrdRowReflect101>,
                row_filter::caller< 7, T, D, BrdRowReflect101>,
                row_filter::caller< 8, T, D, BrdRowReflect101>,
                row_filter::caller< 9, T, D, BrdRowReflect101>,
                row_filter::caller<10, T, D, BrdRowReflect101>,
                row_filter::caller<11, T, D, BrdRowReflect101>,
                row_filter::caller<12, T, D, BrdRowReflect101>,
                row_filter::caller<13, T, D, BrdRowReflect101>,
                row_filter::caller<14, T, D, BrdRowReflect101>,
                row_filter::caller<15, T, D, BrdRowReflect101>,
                row_filter::caller<16, T, D, BrdRowReflect101>,
                row_filter::caller<17, T, D, BrdRowReflect101>,
                row_filter::caller<18, T, D, BrdRowReflect101>,
                row_filter::caller<19, T, D, BrdRowReflect101>,
                row_filter::caller<20, T, D, BrdRowReflect101>,
                row_filter::caller<21, T, D, BrdRowReflect101>,
                row_filter::caller<22, T, D, BrdRowReflect101>,
                row_filter::caller<23, T, D, BrdRowReflect101>,
                row_filter::caller<24, T, D, BrdRowReflect101>,
                row_filter::caller<25, T, D, BrdRowReflect101>,
                row_filter::caller<26, T, D, BrdRowReflect101>,
                row_filter::caller<27, T, D, BrdRowReflect101>,
                row_filter::caller<28, T, D, BrdRowReflect101>,
                row_filter::caller<29, T, D, BrdRowReflect101>,
                row_filter::caller<30, T, D, BrdRowReflect101>,
                row_filter::caller<31, T, D, BrdRowReflect101>,
                row_filter::caller<32, T, D, BrdRowReflect101>
            }
        };

        callers[brd_type][ksize]((PtrStepSz<T>)src, (PtrStepSz<D>)dst, kernel, anchor, cc, stream);
    }
}
    template <int KSIZE, typename T, typename D, template<typename> class B>
    void caller(PtrStepSz<T> src, PtrStepSz<D> dst, const float* kernel, int anchor, int cc, cudaStream_t stream)
    {
        int BLOCK_DIM_X;
        int BLOCK_DIM_Y;
        int PATCH_PER_BLOCK;

        if (cc >= 20)
        {
            BLOCK_DIM_X = 32;
            BLOCK_DIM_Y = 8;
            PATCH_PER_BLOCK = 4;
        }
        else
        {
            BLOCK_DIM_X = 32;
            BLOCK_DIM_Y = 4;
            PATCH_PER_BLOCK = 4;
        }

        const dim3 block(BLOCK_DIM_X, BLOCK_DIM_Y);
        const dim3 grid(divUp(src.cols, BLOCK_DIM_X * PATCH_PER_BLOCK), divUp(src.rows, BLOCK_DIM_Y));

        B<T> brd(src.cols);

        linearRowFilter<KSIZE, T, D><<<grid, block, 0, stream>>>(src, dst, kernel, anchor, brd);
        cudaSafeCall( cudaGetLastError() );

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
    #define MAX_KERNEL_SIZE 32

    template <int KSIZE, typename T, typename D, typename B>
    __global__ void linearRowFilter(const PtrStepSz<T> src, PtrStep<D> dst, const float* kernel, const int anchor, const B brd)
    {
        #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 200)
            const int BLOCK_DIM_X = 32;
            const int BLOCK_DIM_Y = 8;
            const int PATCH_PER_BLOCK = 4;
            const int HALO_SIZE = 1;
        #else
            const int BLOCK_DIM_X = 32;
            const int BLOCK_DIM_Y = 4;
            const int PATCH_PER_BLOCK = 4;
            const int HALO_SIZE = 1;
        #endif

        typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_t;

        __shared__ sum_t smem[BLOCK_DIM_Y][(PATCH_PER_BLOCK + 2 * HALO_SIZE) * BLOCK_DIM_X];

        const int y = blockIdx.y * BLOCK_DIM_Y + threadIdx.y;

        if (y >= src.rows)
            return;

        const T* src_row = src.ptr(y);

        const int xStart = blockIdx.x * (PATCH_PER_BLOCK * BLOCK_DIM_X) + threadIdx.x;

        if (blockIdx.x > 0)
        {
            //Load left halo
            #pragma unroll
            for (int j = 0; j < HALO_SIZE; ++j)
                smem[threadIdx.y][threadIdx.x + j * BLOCK_DIM_X] = saturate_cast<sum_t>(src_row[xStart - (HALO_SIZE - j) * BLOCK_DIM_X]);
        }
        else
        {
            //Load left halo
            #pragma unroll
            for (int j = 0; j < HALO_SIZE; ++j)
                smem[threadIdx.y][threadIdx.x + j * BLOCK_DIM_X] = saturate_cast<sum_t>(brd.at_low(xStart - (HALO_SIZE - j) * BLOCK_DIM_X, src_row));
        }

        if (blockIdx.x + 2 < gridDim.x)
        {
            //Load main data
            #pragma unroll
            for (int j = 0; j < PATCH_PER_BLOCK; ++j)
                smem[threadIdx.y][threadIdx.x + HALO_SIZE * BLOCK_DIM_X + j * BLOCK_DIM_X] = saturate_cast<sum_t>(src_row[xStart + j * BLOCK_DIM_X]);

            //Load right halo
            #pragma unroll
            for (int j = 0; j < HALO_SIZE; ++j)
                smem[threadIdx.y][threadIdx.x + (PATCH_PER_BLOCK + HALO_SIZE) * BLOCK_DIM_X + j * BLOCK_DIM_X] = saturate_cast<sum_t>(src_row[xStart + (PATCH_PER_BLOCK + j) * BLOCK_DIM_X]);
        }
        else
        {
            //Load main data
            #pragma unroll
            for (int j = 0; j < PATCH_PER_BLOCK; ++j)
                smem[threadIdx.y][threadIdx.x + HALO_SIZE * BLOCK_DIM_X + j * BLOCK_DIM_X] = saturate_cast<sum_t>(brd.at_high(xStart + j * BLOCK_DIM_X, src_row));

            //Load right halo
            #pragma unroll
            for (int j = 0; j < HALO_SIZE; ++j)
                smem[threadIdx.y][threadIdx.x + (PATCH_PER_BLOCK + HALO_SIZE) * BLOCK_DIM_X + j * BLOCK_DIM_X] = saturate_cast<sum_t>(brd.at_high(xStart + (PATCH_PER_BLOCK + j) * BLOCK_DIM_X, src_row));
        }

        __syncthreads();

        #pragma unroll
        for (int j = 0; j < PATCH_PER_BLOCK; ++j)
        {
            const int x = xStart + j * BLOCK_DIM_X;

            if (x < src.cols)
            {
                sum_t sum = VecTraits<sum_t>::all(0);

                #pragma unroll
                for (int k = 0; k < KSIZE; ++k)
                    sum = sum + smem[threadIdx.y][threadIdx.x + HALO_SIZE * BLOCK_DIM_X + j * BLOCK_DIM_X - anchor + k] * kernel[k];

                dst(y, x) = saturate_cast<D>(sum);
            }
        }
    }

 

posted @ 2019-12-17 11:48  洛笔达  阅读(385)  评论(0编辑  收藏  举报